
12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 1/15

09/08/2016 • 23 minutes to read

This article is the second part of a three part series. Click here to read Part One. Click here
to read Part Three.

Windows Administration

Inside the Windows Vista Kernel: Part 2

Mark Russinovich

At a Glance:

Memory management
Startup and shutdown
Power management

Last month, in the first installment of this three-part series, I looked at Windows Vista
kernel enhancements in the areas of processes and I/O.

This time I'll cover advances in the way Windows Vista manages memory, as well as major
improvements to system startup, shutdown, and power management (Part One).

Every release of Windows® improves scalability and performance, and Windows Vista™ is
no different. The Windows Vista Memory Manager includes numerous enhancements, like
more extensive use of lock-free synchronization techniques, finer-grained locking, tighter
data-structure packing, larger paging I/Os, support for modern GPU memory architectures,
and more efficient use of the hardware Translation Lookaside Buffer. Plus, Windows Vista
memory management now offers dynamic address space allocation for the requirements of
different workloads.

Four performance-enhancing features that use new technologies make their operating
system debut on Windows Vista: SuperFetch, ReadyBoost, ReadyBoot, and ReadyDrive. I'll
discuss them in detail later in this article.

Dynamic Kernel Address Space

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162494(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162458(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162494(v=msdn.10)

12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 2/15

Windows and the applications that run on it have bumped their heads on the address
space limits of 32-bit processors. The Windows kernel is constrained by default to 2GB, or
half the total 32-bit virtual address space, with the other half reserved for use by the
process whose thread is currently running on the CPU. Inside its half, the kernel has to map
itself, device drivers, the file system cache, kernel stacks, per-session code data structures,
and both non-paged (locked-in physical memory) and paged buffers allocated by device
drivers. Prior to Windows Vista, the Memory Manager determined at boot time how much
of the address space to assign to these different purposes, but this inflexibility sometimes
led to situations where one of the regions became full while others still had plenty of
available space. The exhaustion of an area can lead to application failures and prevent
device drivers from completing I/O operations.

In 32-bit Windows Vista, the Memory Manager dynamically manages the kernel's address
space, allocating and deallocating space to various uses as the demands of the workload
require. Thus, the amount of virtual memory used to store paged buffers can grow when
device drivers ask for more, and it can shrink when the drivers release it. Windows Vista will
therefore be able to handle a wider variety of workloads and likewise the 32-bit version of
the forthcoming Windows Server® code-named "Longhorn," will scale to handle more
concurrent Terminal Server users.

Of course, on 64-bit Windows Vista systems, address space constraints are not currently a
practical limitation and therefore require no special treatment as they are configured to
their maximums.

Memory Priorities

Just as Windows Vista adds I/O priorities (as I discussed in the last installment), it also
implements memory priorities. Understanding how Windows uses memory priorities
requires grasping how the Memory Manager implements its memory cache, called the
Standby List. On all versions of Windows prior to Windows Vista, when a physical page
(which is typically 4KB in size) that's owned by a process was reclaimed by the system, the
Memory Manager typically placed the page at the end of the Standby List. If the process
wanted to access the page again, the Memory Manager took the page from the Standby
List and reassigned it to the process. When a process wanted to use a new page of physical
memory and no free memory was available, the Memory Manager gave it the page at the
front the Standby List. This scheme treated all pages on the standby essentially as equals,
using only the time they were placed on the list to sort them.

On Windows Vista, every page of memory has a priority in the range of 0 to 7, and so the
Memory Manager divides the Standby List into eight lists that each store pages of a
particular priority. When the Memory Manager wants to take a page from the Standby List,

12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 3/15

it takes pages from low-priority lists first. A page's priority usually reflects that of the thread
that first causes its allocation. (If the page is shared, it reflects the highest of memory
priorities of the sharing threads.) A thread inherits its page-priority value from the process
to which it belongs. The Memory Manager uses low priorities for pages it reads from disk
speculatively when anticipating a process's memory accesses.

By default, processes have a page-priority value of 5, but functions allow applications and
the system to change process and thread page-priority values. The real power of memory
priorities is realized only when the relative priorities of pages are understood at a macro-
level, which is the role of SuperFetch.

SuperFetch

A significant change to the Memory Manager is in the way that it manages physical
memory. The Standby List management used by previous versions of Windows has two
limitations. First, the prioritization of pages relies only on the recent past behavior of
processes and does not anticipate their future memory requirements. Second, the data
used for prioritization is limited to the list of pages owned by a process at any given point
in time. These shortcomings can result in scenarios like the "after lunch syndrome," where
you leave your computer for a while and a memory-intensive system application runs (such
as an antivirus scan or disk defragmentation). This application forces the code and data
that your active applications had cached in memory to be overwritten by the memory-
intensive activities. When you return, you experience sluggish performance as applications
have to request their data and code from disk.

Windows XP introduced prefetching support that improved boot and application startup
performance by performing large disk I/Os to preload memory with code and file system
data that it expected, based on previous boots and application launches. Windows Vista
goes a big step further with SuperFetch, a memory management scheme that enhances the
least-recently accessed approach with historical information and proactive memory
management.

SuperFetch is implemented in %SystemRoot%\System32\Sysmain.dll as a Windows service
that runs inside a Service Host process (%SystemRoot%\System32\Svchost.exe). The
scheme relies on support from the Memory Manager so that it can retrieve page usage
histories as well as direct the Memory Manager to preload data and code from files on disk
or from a paging file into the Standby List and assign priorities to pages. The SuperFetch
service essentially extends page-tracking to data and code that was once in memory, but
that the Memory Manager has reused to make room for new data and code. It stores this
information in scenario files with a .db extension in the %SystemRoot%\Prefetch directory
alongside standard prefetch files used to optimize application launch. Using this deep

12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 4/15

knowledge of memory usage, SuperFetch can preload data and code when physical
memory becomes available.

Whenever memory becomes free-for example, when an application exits or releases
memory-SuperFetch asks the Memory Manager to fetch data and code that was recently
evicted. This is done at a rate of a few pages per second with Very Low priority I/Os so that
the preloading does not impact the user or other active applications. Therefore, if you leave
your computer to go to lunch and a memory-intensive background task causes the code
and data from your active applications to be evicted from memory while you're gone,
SuperFetch can often bring all or most of it back into memory before you return.
SuperFetch also includes specific scenario support for hibernation, standby, Fast User
Switching (FUS), and application launch. When the system hibernates, for example,
SuperFetch stores data and code in the hibernation file that it expects (based on previous
hibernations) will be accessed during the subsequent resume. In contrast, when you
resume Windows XP, previously cached data must be reread from the disk when it is
referenced.

See the sidebar "Watching SuperFetch" for a glimpse of how SuperFetch impacts available
memory.

Watching SuperFetch

After you’ve used a Windows Vista system a while, you’ll see a low number for the Free
Physical Memory counter on Task Manager’s Performance page. That’s because SuperFetch
and standard Windows caching make use of all available physical memory to cache disk
data. For example, when you first boot, if you immediately run Task Manager you should
notice the Free Memory value decreasing as Cached Memory number rises. Or, if you run a
memory-hungry program and then exit it (any of the freeware “RAM optimizers” that
allocate large amounts of memory and then release the memory will work), or just copy a
very large file, the Free number will rise and the Physical Memory Usage graph will drop as
the system reclaims the deallocated memory. Over time, however, SuperFetch repopulates
the cache with the data that was forced out of memory, so the Cached number will rise and
the Free number will decline.

12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 5/15

Watching memory(Click the image for a larger view)

ReadyBoost

The speed of CPUs and memory are fast outpacing that of hard disks, so disks are a
common system performance bottleneck. Random disk I/O is especially expensive because
disk head seek times are on the order of 10 milliseconds-an eternity for today's 3GHz
processors. While RAM is ideal for caching disk data, it is relatively expensive. Flash
memory, however, is generally cheaper and can service random reads up to 10 times faster
than a typical hard disk. Windows Vista, therefore, includes a feature called ReadyBoost to
take advantage of flash memory storage devices by creating an intermediate caching layer
on them that logically sits between memory and disks.

ReadyBoost consists of a service implemented in %SystemRoot%\System32\Emdmgmt.dll
that runs in a Service Host process, and a volume filter driver,
%SystemRoot%\System32\Drivers\Ecache.sys. (Emd is short for External Memory Device,
the working name for ReadyBoost during its development.) When you insert a flash device
like a USB key into a system, the ReadyBoost service looks at the device to determine its
performance characteristics and stores the results of its test in
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\Currentversion\Emdmgmt, seen
in Figure 1.

12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 6/15

Figure 1** ReadyBoost device test results in the registry **(Click the image for a larger view)

If you aren't already using a device for caching, and the new device is between 256MB and
32GB in size, has a transfer rate of 2.5MB/s or higher for random 4KB reads, and has a
transfer rate of 1.75MB/s or higher for random 512KB writes, then ReadyBoost will ask if
you'd like to dedicate up to 4GB of the storage for disk caching. (Although ReadyBoost can
use NTFS, it limits the maximum cache size to 4GB to accommodate FAT32 limitations.) If
you agree, then the service creates a caching file named ReadyBoost.sfcache in the root of
the device and asks SuperFetch to prepopulate the cache in the background.

After the ReadyBoost service initializes caching, the Ecache.sys device driver intercepts all
reads and writes to local hard disk volumes (C:\, for example), and copies any data being
written into the caching file that the service created. Ecache.sys compresses data and
typically achieves a 2:1 compression ratio so a 4GB cache file will usually contain 8GB of
data. The driver encrypts each block it writes using Advanced Encryption Standard (AES)
encryption with a randomly generated per-boot session key in order to guarantee the
privacy of the data in the cache if the device is removed from the system.

When ReadyBoost sees random reads that can be satisfied from the cache, it services them
from there, but because hard disks have better sequential read access than flash memory,
it lets reads that are part of sequential access patterns go directly to the disk even if the
data is in the cache.

ReadyBoot

Windows Vista uses the same boot-time prefetching as Windows XP did if the system has
less than 512MB of memory, but if the system has 700MB or more of RAM, it uses an in-
RAM cache to optimize the boot process. The size of the cache depends on the total RAM
available, but is large enough to create a reasonable cache and yet allow the system the
memory it needs to boot smoothly.

After every boot, the ReadyBoost service (the same service that implements the
ReadyBoost feature just described) uses idle CPU time to calculate a boot-time caching

12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 7/15

plan for the next boot. It analyzes file trace information from the five previous boots and
identifies which files were accessed and where they are located on disk. It stores the
processed traces in %SystemRoot%\Prefetch\Readyboot as .fx files and saves the caching
plan under HKLM\System\CurrentControlSet\Services\Ecache\Parameters in REG_BINARY
values named for internal disk volumes they refer to.

The cache is implemented by the same device driver that implements ReadyBoost caching
(Ecache.sys), but the cache's population is guided by the ReadyBoost service as the system
boots. While the boot cache is compressed like the ReadyBoost cache, another difference
between ReadyBoost and ReadyBoot cache management is that while in ReadyBoot mode,
other than the ReadyBoost service's updates, the cache doesn't change to reflect data
that's read or written during the boot. The ReadyBoost service deletes the cache 90
seconds after the start of the boot, or if other memory demands warrant it, and records the
cache's statistics in
HKLM\System\CurrentControlSet\Services\Ecache\Parameters\ReadyBootStats, as shown in
Figure 2. Microsoft performance tests show that ReadyBoot provides performance
improvements of about 20 percent over the legacy Windows XP prefetcher.

Figure 2** ReadyBoot Performance statistics **(Click the image for a larger view)

ReadyDrive

ReadyDrive is a Windows Vista feature that takes advantage of new hybrid hard disk drives
called H-HDDs. An H-HDD is a disk with embedded nonvolatile flash memory (also known
as NVRAM). Typical H-HDDs include between 50MB and 512MB of cache, but the Windows
Vista cache limit is 2TB.

Windows Vista uses ATA-8 commands to define the disk data to be held in the flash
memory. For example, Windows Vista will save boot data to the cache when the system
shuts down, allowing for faster restarting. It also stores portions of hibernation file data in
the cache when the system hibernates so that the subsequent resume is faster. Because the

12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 8/15

cache is enabled even when the disk is spun down, Windows can use the flash memory as a
disk-write cache, which avoids spinning up the disk when the system is running on battery
power. Keeping the disk spindle turned off can save much of the power consumed by the
disk drive under normal usage.

Boot Configuration Database

Windows Vista has enhanced several aspects of startup and shutdown. Startup has
improved with the introduction of the Boot Configuration Database (BCD) for storing
system and OS startup configuration, a new flow and organization of system startup
processes, new logon architecture, and support for delayed-autostart services. Windows
Vista shutdown changes include pre-shutdown notification for Windows services, Windows
services shutdown ordering, and a significant change to the way the OS manages power
state transitions.

One of the most visible changes to the startup process is the absence of Boot.ini from the
root of the system volume. That's because the boot configuration, which on previous
versions of Windows was stored in the Boot.ini text file, is now stored in the BCD. One of
the reasons Windows Vista uses the BCD is that it unifies the two current boot architectures
supported by Windows: Master Boot Record (MBR) and Extensible Firmware Interface (EFI).
MBR is generally used by x86 and x64 desktop systems, while EFI is used by Itanium-based
systems (though desktop PCs are likely to ship with EFI support in the near future). The
BCD abstracts the firmware and has other advantages over Boot.ini, like its support for
Unicode strings and alternate pre-boot executables.

The BCD is actually stored on disk in a registry hive that loads into the Windows registry for
access via registry APIs. On PCs, Windows stores it in \Boot\Bcd on the system volume. On
EFI systems, it's on the EFI system partition. When the hive is loaded, it appears under
HKLM\Bcd00000000, but its internal format is undocumented so editing it requires the use
of a tool like %SystemRoot%\System32\Bcdedit.exe. Interfaces for manipulating the BCD
are also made available for scripts and custom editors through Windows Management
Instrumentation (WMI) and you can use the Windows System Configuration Utility
(%SystemRoot%\System32\Msconfig.exe) to edit or add basic parameters, like kernel
debugging options.

The BCD divides platform-wide boot settings, like the default OS selection and the boot
menu timeout, from OS-specific settings such as OS boot options and the path to the OS
boot loader. For example, Figure 3 shows that when you run Bcdedit with no command-
line options, it displays platform settings in the Windows Boot Manager section at the top
of the output, followed by OS-specific settings in the Windows Boot Loader section.

12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 9/15

Figure 3** Settings displayed in BCDEdit **(Click the image for a larger view)

When you boot a Windows Vista installation, this new scheme divides the tasks that were
handled by the operating system loader (Ntldr) on previous versions of Windows into two
different executables: \BootMgr and %SystemRoot%\System32\Winload.exe. Bootmgr
reads the BCD and displays the OS boot menu, while Winload.exe handles operating-
system loading. If you're performing a clean boot, Winload.exe loads boot-start device
drivers and core operating system files, including Ntoskrnl.exe, and transfers control to the
operating system; if the system is resuming from hibernation, then it executes
%SystemRoot%\System32\Winresume.exe to load the hibernation data into memory and
resume the OS.

Bootmgr also includes support for additional pre-boot executables. Windows Vista comes
with the Windows Memory Diagnostic (\Boot\Memtest.exe) pre-configured as an option
for checking the health of RAM, but third parties can add their own pre-boot executables
as options that will display in Bootmgr's boot menu.

Startup Processes

In previous versions of Windows, the relationship between various system processes was
unintuitive. For example, as the system boots, the interactive logon manager
(%SystemRoot%\System32\Winlogon.exe) launches the Local Security Authority Subsystem
Service (Lsass.exe) and the Service Control Manager (Services.exe). Further, Windows uses a
namespace container called a Session to isolate processes running in different logon
sessions. But prior to Windows Vista, the user logged into the console shared Session 0,
the session used by system processes, which created potential security issues. One such
issue was introduced, for example, when a poorly written Windows service running in
Session 0 displayed a user interface on the interactive console, allowing malware to attack
the window through techniques like shatter attacks and possibly gain administrative
privileges.

12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 10/15

To address these problems, several system processes were re-architected for Windows
Vista. Session Manager (Smss.exe) is the first user-mode process created during the boot
as in previous versions of Windows, but on Windows Vista the Session Manager launches a
second instance of itself to configure Session 0, which is dedicated solely to system
processes. The Session Manager process for Session 0 launches the Windows Startup
Application (Wininit.exe), a Windows subsystem process (Csrss.exe) for Session 0, and then
it exits. The Windows Startup Application continues by starting the Service Control
Manager, the Local Security Authority Subsystem, and a new process, Local Session
Manager (Lsm.exe), which manages terminal server connections for the machine.

When a user logs onto the system, the initial Session Manager creates a new instance of
itself to configure the new session. The new Smss.exe process starts a Windows subsystem
process and Winlogon process for the new session. Having the primary Session Manager
use copies of itself to initialize new sessions doesn't offer any advantages on a client
system, but on Windows Server "Longhorn" systems acting as terminal servers, multiple
copies can run concurrently to allow for faster logon of multiple users.

With this new architecture, system processes, including Windows services, are isolated in
Session 0. If a Windows service, which runs in Session 0, displays a user interface, the
Interactive Services Detection service (%SystemRoot%\System32\UI0Detect.exe) notifies
any logged-on administrator by launching an instance of itself in the user's security context
and displaying the message shown in Figure 4. If the user selects the "Show me the
message" button, the service switches the desktop to the Windows service desktop, where
the user can interact with the service's user interface and then switch back to their own
desktop. For more on what happens at startup, see the sidebar "Viewing Startup Process
Relationships."

Figure 4** Service has displayed a window **(Click the image for a larger view)

Viewing Startup Process Relationships

12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 11/15

You can use Process Explorer from Sysinternals (microsoft.com/technet/sysinternals) to see
the process startup tree of Windows Vista.

The screenshot includes the Session column, which you can add through Process Explorer’s
column dialog. The highlighted process is the initial Smss.exe. Below it is the Session 0
Csrss.exe and Wininit.exe, which are left-justified because their parent process, the instance
of Smss.exe that configured Session 0, has exited. Wininit’s three children are Services.exe,
Lsass.exe, and Lsm.exe.

Process Explorer identifies a set of processes as running in Session 1 and that’s the session
I’m logged into through a Remote Desktop connection. Process Explorer displays processes
running in the same account as itself with a blue highlight color. Finally, Session 2 was
initialized to prepare for a user logging into the console and creating a new logon session.
It’s in that session that Winlogon is running and using LogonUI to ask a new console user
to “Press Ctrl+Alt+DELETE to Log on”, and in which Logonui.exe will ask the user for his
credentials.

Startup process and session information(Click the image for a larger view)

Credential Providers

Even the logon architecture is changed on Windows Vista. On previous versions of
Windows, the Winlogon process loaded the Graphical Identification and Authentication
(GINA) DLL specified in the registry to display a logon UI that asked users for their
credentials. Unfortunately, the GINA model suffers from several limitations, including the
fact that only one GINA can be configured, writing a complete GINA is difficult for third

12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 12/15

parties, and custom GINAs that have non-standard user interfaces change the Windows
user experience.

Instead of a GINA, Windows Vista uses the new Credential Provider architecture. Winlogon
launches a separate process, the Logon User Interface Host (Logonui.exe), that loads
credential providers that are configured in
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\Currentversion\Authentication\Credential Providers. Logonui can host multiple
credential providers concurrently; in fact, Windows Vista ships with interactive (Authui.dll)
and smartcard (Smart-cardcredentialprovider.dll) providers. To ensure a uniform user
experience, LogonUI manages the user interface that is displayed to end users, but it also
allows credential providers to specify custom elements like text, icons, and edit controls.

Delayed-Autostart Services

If you've ever logged onto a Windows system immediately after it starts, you've probably
experienced delays before your desktop is fully configured and you can interact with the
shell and any applications you launch. While you're logging on, the Service Control
Manager is starting the many Windows services that are configured as automatic start
services and therefore activate at boot time. Many services perform CPU and disk-intensive
initializations that compete with your logon activities. To accommodate this, Windows Vista
introduces a new service start type called delayed automatic start, which services can use if
they don't have to be active immediately after Windows boots.

The Service Control Manager starts services configured for delayed automatic start after
the automatic-start services have finished starting and it sets the priority of their initial
thread to THREAD_PRIORITY_LOWEST. This priority level causes all the disk I/O the thread
performs to be Very Low I/O priority. After a service finishes initializing, the Service Control
Manager sets its priority to normal. The combination of the delayed start, low CPU and
memory priority, and background disk priority greatly reduce interference with a user's
logon. Many Windows services, including Background Intelligent Transfer, Windows Update
Client, and Windows Media® Center, use the new start type to help improve the
performance of logons after a boot.

Shutdown

A problem that's plagued Windows service writers is that during a Windows shutdown they
have, by default, a maximum of twenty seconds to perform cleanup. Versions of Windows
prior to Windows Vista haven't supported a clean shutdown that waits for all services to
exit because a buggy service can hold up a shutdown indefinitely. Some services, like those
that have network-related shutdown operations or have to save large amounts of data to

12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 13/15

disk, might require more time and so Windows Vista allows a service to request pre-
shutdown notification.

When Windows Vista shuts down, the Service Control Manager first notifies those services
asking for pre-shutdown notification. It will wait indefinitely for these services to exit, but if
they have a bug and don't respond to queries, the Service Control Manager gives up and
moves on after three minutes. Once all those services have exited or the timeout has
expired, the Service Control Manager proceeds with legacy-style services shutdown for the
rest of the services. The Group Policy and Windows Update services register pre-shutdown
notification in a fresh Windows Vista installation.

The Group Policy and Windows Update services also use another Windows Vista services
feature: shutdown ordering. Services have always been able to specify startup
dependencies that the Service Control Manager honors to start services in an order that
satisfies them, but until Windows Vista they have been unable to specify shutdown
dependencies. Now services that register for pre-shutdown notification can also insert
themselves into the list stored at
HKLM\System\CurrentControlSet\Control\PreshutdownOrder and the Service Control
Manager will shut them down according to their order. See the sidebar "Identifying a
Delayed-Autostart and Pre-Shutdown Service" for more on these services.

Power Management

Sleep and hibernate are other forms of shutdown, and buggy power management in
drivers and applications has been the curse of road warriors since Windows 2000
introduced power management to the Windows NT®-based line of Windows operating
systems. Many users have expected their laptop system to suspend or hibernate when they
closed the lid before embarking on a trip, only to arrive at their destination with a hot
carrying case, a dead battery, and lost data. That's because Windows has always asked
device drivers and applications for their consent to change power state and a single
unresponsive driver or application could prevent a transition.

In Windows Vista, the kernel's Power Manager still informs drivers and applications of
power-state changes so that they can prepare for them, but it no longer asks for
permission. In addition, the Power Manager waits, at most, 20 seconds for applications to
respond to change notifications, rather than the two minutes it waited on previous versions
of Windows. As a result, Windows Vista users can be more confident that their systems are
honoring hibernations and suspends.

Next Up

12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 14/15

As mentioned earlier, this is the second installment in a three-part series. The first part
covered Windows Vista kernel improvements in the areas of I/O and processes. This time, I
looked at Windows Vista enhancements in memory management, startup, and shutdown.
Next time, I'll conclude the series by describing changes to the kernel in the areas of
reliability and security.

Identifying a Delayed-Autostart and Pre-Shutdown Service

The built-in SC command is updated in Windows Vista to show services configured as
delayed autostart services:

Using SC to display start type(Click the image for a larger view)

Unfortunately, the SC command does not report services that have requested pre-
shutdown notification, but you can use the PsService utility from Sysinternals to see that a
service accepts pre-shutdown notification:

Viewing pre-shutdown status(Click the image for a larger view)

Mark Russinovich is a Technical Fellow at Microsoft in the Platform and Services Division.
He is a coauthor of Microsoft Windows Internals (Microsoft Press, 2004) and a frequent
speaker at IT and developer conferences. He joined Microsoft with the recent acquisition of
the company he cofounded, Winternals Software. He also created Sysinternals, where he
published the Process Explorer, Filemon, and Regmon utilities.

12/31/2020 Windows Administration: Inside the Windows Vista Kernel: Part 2 | Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc162480(v=msdn.10) 15/15

© 2008 Microsoft Corporation and CMP Media, LLC. All rights reserved; reproduction in
part or in whole without permission is prohibited.

