
12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 1/61

June 13, 2009

Windows 7 UAC code-injection vulnerability: video
demonstration, source code released

If I’m beginning to sound like a broken record to you, I respectfully ask you to hear me out for

what I would hope is the last time.

[�v:uaccodeinject.mp4 640 400]

I know from my own experience that large chunks of technical blabber on the topic of

software security is not the most enjoyable reading experience. To help illustrate my point

better, I’ve embedded above a very brief 2-minute long screencast to demonstrate the

Windows 7 UAC code-injection vulnerability I’ve been touting. If you don’t plan on reading any

further, please at least watch that.

Assuming you have some insights into how this code-injection

vulnerability works, I want to elaborate on a couple points to

reinforce my case.

Firstly, I want to touch on the nature of remote code-execution

vulnerabilities and how it relates to this code-injection

vulnerability. If you’re an everyday Windows user, you would

have without a slither of doubt come across the words “remote

code-execution” (RCE) sometime in the past or even as recent as

today assuming you’ve applied your Windows patches which

covers several RCE vulnerabilities. In case you’re not entirely sure what it means, at the most

basic level it describes a system executing code provided to it by a remote source without any

intervention from the user. RCE vulnerabilities not only affect Microsoft products, but Adobe

Reader, Mozilla Firefox and many popular third-party softwares millions of users trust.

RCE by itself warrants some attention, but with the introduction of default UAC policy in

Windows Vista, the potential impact of RCE vulnerabilities were actually reduced because the

malicious code can no longer assume full administrative privileges, instead, limited to what the

target application was running which in most scenarios was medium-level or even low-

integrity like in Internet Explorer. However, in conjunction with the default Windows 7 UAC

policy and this vulnerability, the potential impact of RCE vulnerabilities is raised, as the

malicious code executed could silently elevate itself to have much more free reign over the

system than before. If this isn’t enough indication that the default security policy in 7 is worse

than Vista, than I don’t know what is.

Secondly, besides the obvious malicious use for the UAC vulnerability, there is nothing

stopping it from being abused by legitimate developers and their applications. After

suggesting such a scenario in my original article, one such developer have already expressed

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/
https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/
https://www.istartedsomething.com/20090611/uac-in-windows-7-still-broken-microsoft-wont-fix-code-injection-vulnerability/
https://www.microsoft.com/technet/security/bulletin/ms09-jun.mspx
https://www.google.com/search?q=remote+code+execution+Microsoft
https://www.google.com/search?q=remote+code+execution+Adobe+Reader
https://www.google.com/search?q=remote+code+execution+Firefox
https://www.istartedsomething.com/20090611/uac-in-windows-7-still-broken-microsoft-wont-fix-code-injection-vulnerability/#comment-75629

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 2/61

Newer →

interest in using this vulnerability in such a way that will remove UAC prompts from his

applications.

Now I’m fairly con�dent that this developer has the best intentions for his users, but what this

means if it is ever applied in practice is that for the large majority of users who will use the

default UAC policy, UAC prompts be only a waste of their time. I say this because if some

applications can elevate themselves with or without the user agreeing to a prompt, the

prompt’s effects are nulli�ed. To look at it in another light, at the default Windows 7 UAC

policy, it’s as good as having UAC prompts turned off entirely.

Last but not least, since Microsoft has known about this for half a year as well as indirectly

acknowledged and ignored this vulnerability, I have asked Leo Davidson to release the proof-

of-concept source code and test application into the wild for public scrutiny. If Microsoft is

right in saying this has no security implications, then this should mean nothing. If they are not

then, well, at least there is still time to do something about it. A month to be exact.

I realize Microsoft will not by any stretch of the imagination return Windows 7 to the Windows

Vista “always on” mode of UAC, there’s too much to lose. What I would like is for Microsoft to

acknowledge that there is an increased security risk with using the default Windows 7 UAC

policy, and communicate this to users where appropriate.

I’m not saying this is the end of the line for Windows 7, it’s an amazing operating system. But

for Microsoft to simply ignore this seems irresponsible to me. There are so many people I’d

like to evangelize the product to once it ships, and I’d hate this to be one thing I’d also have to

mention.

← Older

102 insightful thoughts

Tweet
Like 0

Matt
Sharpe

June 13, 2009 at 1:16 am

A nice demonstration video of a rather worrying weakness in UAC.

https://www.istartedsomething.com/20090617/internet-explorer-8-treasure-hunt-microsoft-australia-hides-10000/
https://www.istartedsomething.com/20090611/uac-in-windows-7-still-broken-microsoft-wont-fix-code-injection-vulnerability/#comment-75629
https://technet.microsoft.com/en-us/magazine/2009.07.uac.aspx
http://www.pretentiousname.com/misc/win7_uac_whitelist2.html
https://www.istartedsomething.com/20090611/uac-in-windows-7-still-broken-microsoft-wont-fix-code-injection-vulnerability/
https://twitter.com/intent/tweet?original_referer=https%3A%2F%2Fwww.istartedsomething.com%2F&ref_src=twsrc%5Etfw&text=Windows%207%20UAC%20code-injection%20vulnerability%3A%20video%20demonstration%2C%20source%20code%20released&tw_p=tweetbutton&url=https%3A%2F%2Fwww.istartedsomething.com%2F20090613%2Fwindows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released%2F&via=longzheng
http://www.mdsharpe.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 3/61

UAC issue
�xed

December 22, 2010 at 10:32 am

This UAC issue has been �xed over a year ago. All of these
comments are over 18 months old.

Rahul

June 13, 2009 at 1:48 am

i think action center must alert the user at default UAC policy with a
warning message & have the ability to raise the UAC level to “Always
Alert” from within action center. this would serve all the purposes. a)
microsoft could leave UAC setting unchanged. b). End user at the same
time know security implication of it.

GoodThing
s2Life

June 13, 2009 at 1:51 am

I’d be content if they switched the default user account creation to
Standard and left the UAC default alone but provided some type of
initial dialog and description in UAC con�guration that explicitly
described the risk.

Matteo
Gazzoni

June 13, 2009 at 1:57 am

http://images.chron.com/blogs/techblog/uac.jpg

Default – Recommended if you use familiar programs and visit familiar
websites.

Mike

June 13, 2009 at 2:01 am

If anyone purposefully tries to circumvent UAC in their software product
they will be subjugating themselves to future problems the same way
people did when they wrote their web applications to work only with IE6.
The day will come when Microsoft will make the default user a standard
user account..

http://images.chron.com/blogs/techblog/uac.jpg

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 4/61

Xepol

June 13, 2009 at 2:03 am

I still feel that if the apis that allows this happen required elevation, the
whole argument would be moot. Elevation would be required before the
attack.

I do not personally feel that DLL injection has signi�cantly improved
anything I have seen. For MS, if it wants to patch the OS, the can do it
properly. For anyone else – they probably shouldn’t be able to do it at
all.

Yes, it might cause a few apps to fail in the process, any those few
valuable programs that use this will have to �gure out a better way to
get the job done (or live with elevation prompts), but it will be worth it in
the end.

And MS can implement that solution pretty quickly (although testing
might be more extensive and time consuming).

WELL-
DONE
EXPOSÉ
OF THE
DANGERO
US FLAW!

June 13, 2009 at 2:54 am

Mark Russinovich SOLD OUT THE REST OF US for a fat paycheck at
Microsoft.

Mark Russinovich’s CORPORATE-BULLSHIT SPIN on the UAC debacle
and Microsoft’s UNWILLINGNESS TO REWRITE WINDOWS AS A
SECURE PRODUCT leaves us all wasting millions of dollars and hours on
an UNSTABLE O/S and third-party crap from scammers like Symantec
and McAfee (who were just �ned $750,000 by New York’s Attorney
General, for credit-card scamming of their “beloved” customers).

LONG ZHENG, KEEP UP THE GOOD WORK!!!!!

Laslow

June 13, 2009 at 3:01 am

@Xepol – The trick is, the app that perform these tasks *doesn’t*
require elevation in order to do the code injection. That’s the point. If
you’ll note in the video, no UAC prompt is presented when the proof-of-
concept app is launched, therefore any malicious program that does the
same thing will also not display a UAC prompt.

Think ‘Bonzi Buddy’ installing itself silently via this method – that’s scary
enough!

http://laslow.net/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 5/61

Peter van
Dam

June 13, 2009 at 3:05 am

This leak isn’t working.

I’m on 64bit running this app (64bit version) I hit any button and it
requests UAC approval like it should do. This with default UAC settings.
So this problem is FIXED

Long
Zheng

June 13, 2009 at 3:09 am

@Peter van Dam: That might be a bug. Leo was reporting problems with
the compiler, and for some reason the UAC prompts would be triggered.
I have personally tested the updated 32bit app, which still exploits this
vulnerability. The 64bit proof of concept might be bugged.

I’ll make sure Leo knows of this. But please for the moment do not
assume it has been �xed.

Quppa

June 13, 2009 at 3:27 am

So, after reading the Channel 9 thread
(http://channel9.msdn.com/forums/Coffeehouse/473037-UAC-
controversy-the-last-episode/), the situation seems to be:
– When running as Admin in Vista or 7, UAC is not going to prevent
malicious code getting admin privileges.
– The default setting in Windows 7 makes the above a bit easier than
the default Windows Vista setting did.
– Running as a Standard User is the only way to be properly secure, but
that’s too annoying for most people.
– The main point of UAC prompts in Vista/7 when running as admin is to
annoy people in order to encourage developers to write better code.

Long
Zheng

June 13, 2009 at 3:29 am

@Quppa: The sad fact is that this invalidates the last point too.

http://www.webstylecenter.com/
https://www.quppa.net/
http://channel9.msdn.com/forums/Coffeehouse/473037-UAC-controversy-the-last-episode/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 6/61

Matteo
Gazzoni

June 13, 2009 at 4:35 am

@Long Zheng:
If a developer prefers to write hacks instead of properly �xing his code
it’s not Microsoft fault.

d1

June 13, 2009 at 5:36 am

i dont see what the problem is:

– the �rst account during windows installation is the admin accout; we
want this because the person installing windows IS an admin user and
NEEDS admin rights

– the second (and any other) account created, is by default a standard
account.

– if you ever installed windows you should be smart enough (being of
admin status) to create a second account account (which defaults to
standad user) for your own personal use (keeping the admin account
solely for admin duties)

– standard users arent affected by this at all; this is what EVERYONE
should be using.

– i will not go into the argument that UAC is/isn’t a security boundary,
neither on how its perceived, nor would i on the fact that the system
would need to be compromised �rst, nor that an admin user would have
to explicitly activate their choice applications �rst (by an abusive or not
developer); if an admin user is stupid, its not a windows concern

– YES, the majority of users ARE and WILL remains IDIOTS; that is not
a windows concern.

– admin users know what they are doing; and DO NOT need the extra
prompt; and LIKE the less prompts

– if an admin is unsure (a though that should not cross a real admin
user), the admin user can increase the default UAC behavior

– There is a case that upon windows installation Microsoft whould at
that point recommend that the user create a standard account for their
own use; leaving the admin account (required on installation) solely for
admin duties.

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 7/61

– I repeat, admin users LIKE this, and standard users DO NOT care.

Did I miss something?

JeffU

June 13, 2009 at 5:42 am

And again I say, who cares. People are GOING to say YES to any prompt
that comes on their screen, 95% of windows users are already
Administrator.

Therefore your point is Moot Long, you’re making mountains out of mole
hills. It’s insigni�cant.. and you’re really making yourself look very silly at
this point for reposting this.

Leo
Davidson

June 13, 2009 at 6:12 am

@Peter van Dam: Are you using RC1 or a different build? I’ve tested the
64-bit version on RC1 and it seems to work �ne.

Do you see a UAC prompt if you create a folder below Program Files
using Explorer? If so your UAC settings are not the default.

I’ll double-check the 64-bit version again in a moment but it de�nitely
worked a few hours ago.

Leo
Davidson

June 13, 2009 at 6:13 am

@JeffU: People who say “yes” to everything cannot be helped. By your
logic there is zero point to Standard User accounts either as those
stupid people will say yes to elevate everything into the Administrator
account.

Leo
Davidson

June 13, 2009 at 6:25 am

@Quppa: See my comment in the Channel 9 thread.

To say that things can get admin access in both Vista and Win7 belittles
the point that in Vista stuff has to lurk waiting for the user to do
something particular — or put up a UAC prompt and hope the user

http://www.pretentiousname.com/
http://www.pretentiousname.com/
http://www.pretentiousname.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 8/61

clicks on it — while in Win7 (by default) it anything code that is running
(e.g. through an RCE or buffer-over�ow) in just about any process (other
than low-integrity IE) can *immediately* and *silently* get full admin
access and install itself as a rootkit.

Anyone who says that none of this matters because stuff could spoof
UAC prompts in Vista is either trying to make excuses for a broken
system or must, if they follow their logic, also argue that it is pointless
to have standard user accounts. You can spoof or hijack a UAC prompt
triggered in a standard user account the same as you can spoof one
from an admin account.

It’s BS logic and quite frustrating to see if used as an argument. Those
people are essentially saying that “security is pointless so why bother
with anything at all?” Except they won’t admit it and they cling to the
standard user case as if it is immune from UAC prompt spoo�ng, as if it
isn’t more irritating than the admin case on Vista was (and thus unlikely
to be used by many people), as if it was the default (when it’s not,
although one of the posters in that thread claimed it was).

Leo
Davidson

June 13, 2009 at 6:27 am

@d1: “Did I miss something?”

Yes, your second point deviates from reality.

Leo
Davidson

June 13, 2009 at 6:30 am

@d1 — Oops, I mean your third point.

Almost nobody creates a standard user account. You can live in a dream
world where people do, but they don’t. They don’t know that they have
to, they aren’t told to, OEMs don’t do it for them, and even if people did
know they should use standard user accounts, they will not do so
because the UAC prompt spamming and password typing with standard
users is *worse* than what drove many people crazy on Vista.

Plus the UAC prompt spoo�ng issues which supposedly make all of this
moot (according to some apologists from Microsoft) applies to standard
user accounts the same as it does to admin accounts. So appearntly
there’s no security there either. We should all give up on this crazy idea
of security and stop complaining, apparently!

http://www.pretentiousname.com/
http://www.pretentiousname.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 9/61

Leo
Davidson

June 13, 2009 at 6:39 am

@Matteo Gazzoni:
“If a developer prefers to write hacks instead of properly �xing his code
it’s not Microsoft fault.”

That’s true, and I wouldn’t use this for a legitimate app.

Still, what Microsoft have put in for their own apps is a hack too. If
Microsoft are using a hack it is their fault. And they won’t let anyone
else use their hack, which is unfair on third-party developers.

Why do Microsoft get a backdoor hack that means they don’t have to
properly design their code (so that it doesn’t prompt so damn much, and
to reduce the annoyance of their stupid prompts-about-prompts) when
nobody else is allowed to do the same?

Why are Microsoft arguing that they want everyone to move to the
standard user case when their code is still awful to use for admin work
via elevation from standard user?

Why are Microsoft saying that the UAC prompts are enabled for admin
accounts on third-party code to purposely make elevation requests
annoying for everyone and reduce the amount of them as much as
possible, when they have not applied that rule to themselves and their
code is, and always has been, the absolute worst offender???

Leo
Davidson

June 13, 2009 at 6:41 am

@Peter van Dam: Just tested the 64-bit version again on Build 7100 (the
RC1) and it de�nitely works.

It probably won’t work on Build 7000 (the beta) because of differences in
which processes can auto-elevate. I could compile a version that does
work on the beta but I assume most people have upgraded to RC1 by
now.

I’ll put a note on my page to let people know it only works with RC1 and
above, though.

http://www.pretentiousname.com/
http://www.pretentiousname.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 10/61

Mike Regan

June 13, 2009 at 6:55 am

Long, I appreciate the extra time you and Leo spent with the post and
video. I feel you have expounded your argument quite precisely and it
gives me pause on my faith in the UAC default setings for Windows 7
while running as an administrator.

If Microsoft’s Windows 7 UAC default setting in conjunction with the
white list is compromised, is there any suggested way to �x it or should
they move the default setting to the Vista level? Could the Windows
process manager scan for an injection before spawning a process from a
trusted white list process? It seems like the best way to patch this is
require a process to be elevated before allowing injection into a white-
listed/already-elevated process.

Leith Bade

June 13, 2009 at 7:21 am

I have the feeling Microsoft will not do anything about this until
someone releases a virus into the wild that makes use of this. Real
viruses always seem to prompt Microsoft to release patches far sooner
than if there is not one.

Matteo
Gazzoni

June 13, 2009 at 7:42 am

One should not rely on a non-security feature for his security. This kind
of vulnerability requires that something is executed on the user machine.
There are some measures to avoid/limit this; UAC is not one of them.
The fact that the user can prevent the execution of that something (by
clicking No) is, i think, only a collateral effect.

About standard users and UAC. This is a convenience for not to switch
to an admin account, it is clear that more convenience (often) means
less security.

I agree that Microsoft with 7 has done nothing or very little to ease the
switch to standard user; and Explorer + standard user is still a joke.

June 13, 2009 at 7:51 am

@Matteo Gazzoni:
“This kind of vulnerability requires that something is executed on the

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 11/61

Leo
Davidson

user machine”

There have been loads of drive-by RCE vulns lately in stuff like Flash and
Adobe Reader. If you visited a site which silently dropped a vuln on your
system, would you rather it was restricted to medium-integrity or that it
could instantly and silently get full-admin rights to install a rootkit that
ensures the malware is never detected?

(Your personal �les are at risk either way, unless you put them
somewhere which requires full admin to read/write, but UAC used to
make it much harder for that thing to install itself deep in your system
than it does with Win 7 by default.)

Obviously the RCE �aws are a much bigger deal, but they exist and
more keep being found. To me it makes sense to limit what can be
achieved via those �aws while we wait weeks for slow companies like
Adobe to respond to them.

Leo
Davidson

June 13, 2009 at 7:57 am

@Mike Regan:
“is there any suggested way to �x it or should they move the default
setting to the Vista level?”

In the short term, I think MS should either set UAC to silently elevate
everything by default, or to always prompt by default. The current
default of showing easily bypassed prompts only for third-party apps
makes no sense from any angle, except snakeoil marketing and security
theatre, and MS are doing a disservice to everyone by pretending
otherwise.

In the long term, I think MS should have refactored their code so that it
does not prompt as often and so that the UAC dialogs could display
more information/context about what is about to be run (which makes
spoo�ng harder and removes the need for prompts-about-prompts). I go
into mind-numbing detail about this on my page if you fancy a numb
mind. hehe

June 13, 2009 at 8:16 am

What about the Low Integrity level in IE (Protected Mode)?

http://www.pretentiousname.com/
http://www.pretentiousname.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 12/61

Matteo
Gazzoni

Nick

June 13, 2009 at 8:28 am

OK, so Windows 7’s auto-elevating UAC does open up a window for
vulnerabilities, but you are essentially trading security for convenience.
Auto-elevation is convenient. Constant nagging isn’t. An unfortunate
side effect of auto-elevation is lower security.

A point could be made that if one UAC prompt can be bypassed, all
UAC prompts are effectively useless. I still see quite a few mitigating
factors:

– The demo doesn’t show anything scary, i.e. a program installing itself
surreptitiously without UAC prompt:
1. in the command-line elevation scenario, you’re *manually* entering a
command. This is pretty much a remake of the old deltree c: /y joke!
2. in the second scenario, you’re launching an elevated Internet Explorer
process. But you can’t instruct it to go to a particular webpage! What
good is it to have an elevated Internet Explorer process lying around if
you can’t do anything with it?

What would be scary would be to be able to inject arbitrary commands,
either in the command-line scenario (without the user having to TYPE it)
or the elevated Internet Explorer (loading a webpage automatically). But
the �aw doesn’t reach that far.

So correct me if I’m wrong, but in order to have access to enough
privileges to do serious damage, elevating your own program is still
needed. I don’t see how a malware program could bene�t from this
auto-elevating �aw.

– Some clamor that the solution is to change, by default, the UAC
security level. I’m not sure that’s really useful. When UAC is set to a
more stringent level, the elevation prompt is the “signed program” one,
and it isn’t scary. It says that a *signed* program wants to make
changes to this computer. A non-expert user could be easily coaxed into
clicking “Yes”.

– If you want less prompts, you will have a more vulnerable system. I
think the minor added risk is worth the added convenience, but if you
disagree, the UAC setting can be changed to a more stringent level if
desired!

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 13/61

So, while this UAC vulnerability is not an non-issue, its consequences
are being greatly exaggerated.

Leo
Davidson

June 13, 2009 at 8:33 am

Low-integrity IE doesn’t help with Flash vulns. because Flash is still
hosted inside a medium-IL proxy process for compatibility. (You’ll see
FlashUtil10b.exe appear in task manager whenever protected-mode IE is
on a page that uses Flash. Process Explorer should show it’s a medium-
IL process.)

Low-integrity IE de�nitely doesn’t save you from something like Adobe
Reader (or any other document/media viewer with a buffer-over�ow
vulnerability) being exploited by a malicious data �le, since those things
run at medium-IL outside of IE.

(It’s be nice if document viewers ran at low-IL but almost none of them
do. That includes stuff like Microsoft’s own Preview Handlers for viewing
Of�ce documents in Explorer which, last time I checked, all explicitly
opt-out of low-IL. If MS can’t do it then it seems a lot to expect
everyone else to.)

IE and Chrome the only things I can think of which run at low-IL and
even those have exceptions like Flash which they host at medium-IL.

Plenty of other network connected processes run at medium-IL,
including Firefox, Safari, Opera, torrent clients, etc. etc..

Which isn’t to say that low-integrity IE/Chrome is useless. It’s a great
idea and I wish more things could be run at low-IL. It just isn’t a silver
bullet.

Microsoft had the “defence in depth” mantra and it’s a good principal. It
should be applied here!

Leo
Davidson

June 13, 2009 at 8:37 am

@Nick:

The demo app could easilly be turned into a command-line tool, or piece
of injected code, which runs whatever it wants elevated without the user
seeing anything.

http://www.pretentiousname.com/
http://www.pretentiousname.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 14/61

Combine that with an RCE vuln., like those recently exploited in the wild
in Flash and Adobe Reader, and you’ve got a vuln which can silently gain
full admin rights on a default install.

If you’re asking us to create such a combination of vulnerabilities then I
think you’re missing the point.

“Auto-elevation is convenient. Constant nagging isn’t. An unfortunate
side effect of auto-elevation is lower security.”

As I keep saying, people asked for MS to improve things but nobody
asked for *this*.

They could have reduced the nagging in better ways, and improved the
Standard User experience to boot, if they wanted to do things right. My
page suggests a bunch of ways they could’ve done this.

Matteo
Gazzoni

June 13, 2009 at 9:24 am

@Leo Davidson:
You’ve said that using a standard user is too annoying because of OTS
prompts. What about the �rst user created, the so-called admin? It’s a
standard user, isn’t it? (except for the split token and the local admin
group, I think)

I say this because it’s ridiculous, IMHO, to create two accounts (admin
and standard) for a computer with only one user. The standard user
accounts, as of now, seem more a thing for business.

Brandon

June 13, 2009 at 10:07 am

@Laslow –

That is a poor example. Bonzi Buddy doesn’t need admin privileges, it
can do what it does just �ne even under a standard user account.
Honestly, there’s really little or no advantage for a single-user system
from a malware perspective. Besides, UAC prompts were never meant to
stop malware. If you agree to run an untrusted executable like
BonziBuddy.exe, you’re already on your way to trouble, and your best
hope is for something like Windows Defender or IE’s Safety Filter to
save you.

http://brandonlive.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 15/61

Note: If Bonzi Buddy were running at low integrity, such as if it took
advantage of an exploit in Internet Explorer, it would NOT be able to use
this mechanism to break out of the low integrity sandbox and install
itself.

Brandon

June 13, 2009 at 10:10 am

@Leo –

In order for anything to run outside of Low IL from IE, such as opening a
PDF document, the user needs to consent to an elevation prompt (the
Protected Mode IE prompt in this case). The exploit demonstrated does
not prevent that prompt from showing.

That seems to be a big part of what you’re missing here.

Leo
Davidson

June 13, 2009 at 10:12 am

@Matteo Gazzoni:

“You’ve said that using a standard user is too annoying because of OTS
prompts.”

I should clarify that I mean it’s going to be too annoying for most people
to use, given the complaints about the less-annoying UAC prompts on
Vista and Microsoft’s botched response to those complaints.

I personally do use a Standard User account on one of my Vista
machines and I don’t �nd it annoying, but it is a machine that is used as
a home theatre PC where the desktop is rarely seen at all and where I
don’t want random people in my living room to have admin access.

“What about the �rst user created, the so-called admin? It’s a standard
user, isn’t it?”

No, an admin account is never a Standard User account. Standard User
accounts have limited rights and can’t do admin stuff.

(The name “Standard User” is confusing because it *isn’t* the standard.
Admin accounts are what get created by default and what almost
everyone uses outside of locked-down business environments (where
UAC is largely out of the picture). So using an admin account might be

http://brandonlive.com/
http://www.pretentiousname.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 16/61

“the standard” — as in “the normal thing that most people do” — but
admin accounts are not Standard User accounts.)

“It’s ridiculous, IMHO, to create two accounts (admin and standard) for a
computer with only one user”

I don’t think it’s ridiculous. One user can have multiple roles and
separate accounts seem like the best mechanism for segregating the
privileges which those roles require. What needs to improve is the
amount of hassle involved with switching roles/accounts. UAC over-the-
shoulder elevation was a step in the right direction compared to the old
way of using fast-user-switching, but there’s still a lot of room for
improvement.

Speaking of roles, I don’t see why you couldn’t have a Standard User
account that was allowed to elevate to a nominated Admin account via
a button click on the secure desktop, without having to type a
password. So long as the secure desktop actually lives up to its name
that should be as secure as typing a password and gives you a proper
security boundary combined with the convenience of single-click UAC
prompts.

(It’s still be vulnerable to spoofed prompts, but so is the current over-
the-shoulder elevation. It’s really annoying me that Microsoft are
dismissing the code-injection issue because of prompt spoo�ng when
prompt spoo�ng affects every UAC mode and, by that logic, means that
standard user accounts are insecure. It’s also really annoying me that
MS refuse to be drawn into a conversation about how they could make
it harder for prompts to be spoofed. IMO they’re just looking for stuff to
say that might trick people into dismissing the issue, but what they’re
saying right now doesn’t add-up.)

Leo
Davidson

June 13, 2009 at 10:14 am

@Brandon: I think you’re missing something, not me.

Do you see a UAC prompt when you save a PDF document and open it
in Adobe Reader? Nope. People assume that documents are harmless.

Do you see a UAC prompt (or any prompt at all) when you visit a
website using Flash, after installing the Flash plugin like everyone has for
YouTube etc.? Nope.

In both those cases you could get malicious code running on your
machine from doing routine actions that most people consider harmless.

http://www.pretentiousname.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 17/61

And in both those cases that code can cause more of a problem if it can
immediately and silently install itself as a rootkit. (Not that it cannot do
a lot of damage without admin access, but things are worse and harder
to �x with it.)

Leo
Davidson

June 13, 2009 at 10:20 am

@Brandon:

In fact, I thought I’d double-check what happens with PDF �les in IE,
since I usually use Firefox… I clicked on a PDF �le and it immediately
opened inside of the IE browser without a single prompt of any kind
whatsoever.

What’s more, it spawns AcroBroker.exe (Adobe PDF Broker Process for
Internet Explorer) as a medium-IL process in which the Adobe Reader
ActiveX control is hosted.

So even in protected-mode IE, with PDF �les, I think your argument falls
apart.

I could disabled the Adobe Reader browser plugin, but even then the
only prompt that IE displays is a Save As dialog asking me where I want
to save the �le. The document is saved to disk and I double-click it and
it opens in Adobe Reader without any further prompts.

(I’m testing using IE8 on Vista. Apologies if something is vastly different
on Windows 7.)

Maurice

June 13, 2009 at 10:34 am

Sorry to burst your bubble but the latest build of Windows 7 does create
Standard Users by default, after the �rst admin of course.

Matteo
Gazzoni

June 13, 2009 at 10:39 am

@Leo Davidson:
“No, an admin account is never a Standard User account. Standard User
accounts have limited rights and can’t do admin stuff.”
But the �rst user is an admin with admin approval mode. When he logs
in, he has the same rights of a standard user.

http://www.pretentiousname.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 18/61

“Speaking of roles, I don’t see why you couldn’t have a Standard User
account that was allowed to elevate to a nominated Admin”.
For personal computers (= with one user which administer himself)
would be nice to rework the concept of privileges and accounts. There
should not be only one set of privileges per account. The user could be
both “standard” and “admin” in the same account (in fact, in the same
way that works Admin Approval Mode).

Leo
Davidson

June 13, 2009 at 11:02 am

@Maurice: “Sorry to burst your bubble but the latest build of Windows 7
does create Standard Users by default, after the �rst admin of course.”

Nobody claimed that Windows *can’t* create standard user accounts. Of
course it can! It just doesn’t by default.

The argument is about the default security that 99.999% of people will
use. Saying that a user can create an additional account and switch to
using it is about as relevant and likely to happen as the same user
switching to Linux. Equally, people who know about thigns in detail can
choose to set UAC to the Always Propt level for their admin account.
Doesn’t change the defaults and the absolute stupidity (aside from
marketing!) of the defaults.

And in case you haven’t noticed, there was a huge backlash against the
UAC prompts in Vista. Those prompts are *worse* for standard users
even in Windows 7.

Almost nobody is going to create a standard user account in Windows 7.

@Matteo Gazzoni:

“But the �rst user is an admin with admin approval mode. When he logs
in, he has the same rights of a standard user.”

Sort-of. UAC tries to do that, and succeeds in many ways if it’s set to
Always Prompt, but it’s not literally the same as having a standard user
account. (It is not a strict security boundary like a separate users is.
There are holes in UAC which don’t exist for standard users. Some of
those holes are inherent and some are ones that could be improved if
MS wanted to. Some issues like prompt-spoo�ng, or just tricking people
to run stuff they shouldn’t, exist for standard users as well.)

So what UAC does (or did) is in many ways similar to using a standard
user account but it is not the same and it is not as secure (nor as

http://www.pretentiousname.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 19/61

annoying).

However, now with Windows 7, by default, UAC does a much worse job
because it’s now so easy for code to silently and immediately bypass the
UAC prompts and jump from the limted-admin token to the full-admin
token.

OutOfTimer

June 13, 2009 at 6:54 pm

Great job, Long Zheng !

LongLiveLe
o

June 13, 2009 at 9:27 pm

Is it possible to set UAC then to Always prompt yet turn off the secure
desktop via Group Policy like Vista?

Leo
Davidson

June 13, 2009 at 10:28 pm

The source code is now online in HTML format as well. Start here:

http://www.pretentiousname.com/misc/W7E_Source/Win7Elevate_Inject.cpp.html

I also converted the step-by-step guide in the readme into HTML:

http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_details.html

Now you don’t have to download the source zip or have Visual Studio to
see how simple it all is.

Quppa

June 13, 2009 at 10:33 pm

@LongLiveLeo: Yes – http://technet.microsoft.com/en-
us/library/dd835564(WS.10).aspx

But not using the Secure Desktop defeats the purpose. (Or at least it
defeats what lots of us assumed was the purpose.)

http://www.pretentiousname.com/
http://www.pretentiousname.com/misc/W7E_Source/Win7Elevate_Inject.cpp.html
http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_details.html
https://www.quppa.net/
https://technet.microsoft.com/en-us/library/dd835564(WS.10)

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 20/61

Peter van
Dam

June 14, 2009 at 3:22 am

@Leo Davidson

Sorry for my late reply. I’m running build 7100, and like I said, i’ts really
in default UAC mode. So to answer your question, No I donnot see a
prompt when adding a folder to program �les.

I’m running no antivirus, no antispyware (except defender), and I haven’t
changed any diffecult registery settings that might effect UAC.

Peter van
Dam

June 14, 2009 at 3:24 am

@Leo Davidson,

oh, and Leo, the prompt tells that sysprep.exe wants to get admin
privileges in case it helps.

Leo
Davidson

June 14, 2009 at 5:01 am

@Peter van Dam:

Weird. Could be an update made sysprep.exe no longer auto-elevate but
AFAIK it’s working for everyone else who has tried it, including people I
know who use Win7 daily and would have it kept up-to-date.

Something could’ve gone wrong with the permissions on sysprep’s
directory, perhaps. The auto-elevate stuff only happens for exes in
specially permissioned folders.

AgNr

June 14, 2009 at 2:21 pm

So, you don’t expect MSFT to change the UAC but that MSFT should
“communicate” this? How? Tell everyone that UAC is �ne but “oh btw
the default setting isn’t secure, so we suggest that YOU change the
setting from its default value”.

“… and I’d hate this to be one thing I’d also have to mention.” If a
default setting isn’t changed by MSFT, and we do know that a lot of
people run on default settings and don’t read much, then given the
above I am afraid you will have to mention it.

http://www.webstylecenter.com/
http://www.webstylecenter.com/
http://www.pretentiousname.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 21/61

people

June 15, 2009 at 4:20 am

Windows 7 is what stupid people asked for. Windows Vista is better than
Windows 7.

OutOfTimer

June 15, 2009 at 11:17 pm

“Windows 7 is what stupid people asked for.”

This may unfortunately be true. The fact that Software Explorer was
removed from Windows Defender is another example of that. Now
they’re also going to control everything we do with our computers.

Peter van
Dam

June 16, 2009 at 1:43 am

@OutOfTimer

Yeah, I also miss that software explorer in Windows Defender. Why the
removal??? Just why? The program worked perfectly �ne, and I didn’t
hear anyone complaining about the software explorer in Windows
Defender…. More like they liked it alot, but didn’t really think it should
have been in Windows Defender.

Right now it’s just removed. No more one place to go to have a nice
overview on what should startup or not, and something that monitors it.
This is just another really bad change in 7.

Windows 7 makes some mistakes �xed. But why add new bugs, new
security problems, new startup issues??? Is this something you remove
just so they can sell Windows 8 that brings back these things???

link8583

June 17, 2009 at 11:12 pm

@Leo Davidson
“I clicked on a PDF �le and it immediately opened inside of the IE
browser without a single prompt of any kind whatsoever.
What’s more, it spawns AcroBroker.exe (Adobe PDF Broker Process for
Internet Explorer) as a medium-IL process in which the Adobe Reader

http://www.webstylecenter.com/
http://www.julien-manici.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 22/61

ActiveX control is hosted.So even in protected-mode IE, with PDF �les, I
think your argument falls apart.”

You’re wrong.

take a look at this document :
http://www.adobe.com/devnet/reader/articles/reader_compatibility/readercomp_pdfrend

it says the following : “One of the bene�ts of using the in-proc DLL
model in Acrobat 9 is that Acrobat can operate more securely in the
context of browsing the Web with Internet Explorer 7 on Vista. By
default, InternetExplorer 7 on Vista runs in a low-rights mode, which
means that the Internet Explorer 7 process, and all in-proc DLLs such as
Acrobat 9, are more limited in what they can do.”

It clearly states that adobe reader’s rendering is done within the IE
process, at low integrity.

AcroBroker.exe does NOT host the adobe reader plugin, it is there only
to show the “save as” dialog box which asks the user where the �le
should be saved if the user clicks on “�le”, “save as”, and then copy the
�le from protected storage to the real �le system accordingly to the
user decision.

It’s exactly the same as the IE process broker (ieuser.exe with IE7,
ielowutil.exe with IE8). A malware cannot write where it wants if it
manages to take control of iexplore.Exe, the worst thing he can do is to
show the “save as” dialog to the user. If the user con�rms it, then he will
have to execute manually the �le that the malware wanted to copy to
the user pro�le… It’s exactly the same as if a site asks you to download
a malware and run it yourself ^^

About adobe �ash player, I didn’t �nd a document to con�rm what I
think, but I looks like it is the same thing as with adobe reader:
�ashutil9b.exe runs in the background as medium integrity process to
allow �ash player to persist its cache and settings outside protected
mode in his own folder only (a �aw would not permit to control
�ashutil9b.exe to write elsewhere).

Flash player rendering takes place INSIDE iexplore.exe process, not in
�ashutil9b.exe. You can con�rm this by visiting youtube, you will see that
while a video is playing, �ashutil9b.exe stays at 0 or 1 % cpu usage, as
opposite to IE which suddenly use much more CPU. This clearly shows
that the �ash ax plugin works INSIDE the IE process, in low integrity
mode.

https://www.adobe.com/devnet/reader/articles/reader_compatibility/readercomp_pdfrendering.pdf

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 23/61

If you can con�rm that a malware can’t use the �aw you discovered
from a low integrity process, then it means that Internet Explorer will be
the ONLY secure browser when running windows 7 with default UAC
settings, and that the UAC is not useless for IE users.

A �refox user would be exposed by �refox, adobe reader, and �ash �aws,
all of these could allow a malware to gain admin rights

But a IE user would be safe because IE, �ash, and adobe reader run in
low integrity mode, thus a malware could not even install as user mode.

Leo
Davidson

June 18, 2009 at 6:26 am

@link8583:

Thanks for the corrections. I didn’t realise that was all the brokers did.
I’ll post corrections to places where I’ve made incorrect statements
about that (as far as I can remember at least!).

In that case IE (and probably Chrome) should be safe from the problem,
I agree.

Still leaves Firefox etc. and issues that affect local media
players/readers/viewers. (e.g. The PDF issue will still affect you if you
download the PDF and then view it. Ditto a buffer-over�ow exploit
affecting, say, MP3 tag parsing in a music player, or something like the
old WMF issue.)

link8583

June 18, 2009 at 8:52 am

“In that case IE (and probably Chrome) should be safe from the problem,
I agree”

according to these pages,
http://dev.chromium.org/developers/design-documents/sandbox
http://blog.chromium.org/2008/10/new-approach-to-browser-security-
google.html

Chrome 1 does not sandbox plug-ins by default.
Is it still the same with chrome 2? I did not �nd any information about it.

“Still leaves Firefox etc. and issues that affect local media
players/readers/viewers.”

http://www.pretentiousname.com/
http://www.julien-manici.com/
https://dev.chromium.org/developers/design-documents/sandbox
https://blog.chromium.org/2008/10/new-approach-to-browser-security-google.html

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 24/61

Too bad that mozilla is too con�dent about �refox security to care about
implementing a sandbox…
�refox + �ash/adobe reader is the next IE6 SP0!

However, I think most antivirus will block code injection between process
by default as a proactive security measure. I believe Kaspersky internet
security has been able to do that for a long time. Not a panacea, but
better than nothing for most users who are going to use the default
settings (if they use a decent antivirus at least!)

“The PDF issue will still affect you if you download the PDF and then
view it.”

Indeed. And unfortunately, it’s not possible to launch an adobe reader
embedded inside IE to view a downloaded pdf �le. That’s a shame, it
would be so easy for adobe to provide a stand alone pdf reader running
at low integrity as they have done most of the job for the IE plugin
implementation. That would be really usefull since adobe reader is
heavily targeted by hackers (and aslr and dep are irrelevant for non-
buffer-over�ow �aws).

Jad

June 19, 2009 at 1:23 am

Trackback:
http://www.theregister.co.uk/2009/06/18/windows7_security_hole/

Steve

June 19, 2009 at 1:31 am

In my experience, those who are conscious about security and
understand computers turn UAC off, and accept their own responsibility
in doing so. Those who don’t understand (average user) click ok
regardless – “A window popped up on IE saying i didn’t have a virus
checker, so i downloaded something called ‘wibbly wonky fake virus
checker’, then click ok on everything to install it” – happens far too
often. UAC is a smokescreen to fob off the responsibility of security to
the user. Yes, microsoft should �x this, but better still just sort out user
proveleges so this junk UAC system becomes unnecessary!!! (and I can
stop handing out linux disks…)

https://www.theregister.co.uk/2009/06/18/windows7_security_hole/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 25/61

Hassan

June 19, 2009 at 6:46 am

Windows 7 Rocks. The rest sucks.

James
Butler

June 19, 2009 at 7:15 am

A serious, long-standing question, not a �ame:

Red Hat’s Fedora Linux distribution (and many other Posix distributions)
creates a “root” account (which is actually *more* privileged than
Windows’ admin accounts) during installation, and at the end of
installation the admin *must* create an unprivileged user account to run
the system as. After the installation has completed, your are simply
unable to log in as “root”, forcing any user to use their unprivileged
login, and then switch (su) to root when needed. There is no “do you
want to temporarily switch to root to allow this thing to work”
prompting, because everything (with few exceptions) is designed to run
strictly in userland. If you need root (typically for application installation
and a few other things), you go through the simple process to become
root, execute the operation and logout of root, back to the unprivileged
identity. No UAC. No prompting. Just an alert that says “no can do” and
the ability for the user to then take manual steps to elevate themselves
for the task at hand.

Again, a serious question and not a �ame: What is stopping Microsoft
from doing the same thing? Thanks.

CConsultan
t

June 19, 2009 at 7:32 am

In testing last of win 7using IE8 to test Bing I had an attack that did
take advantage of this hole.
I was doing a random search in Bing and was noting that action were
being done in the background wile Bing was loading . i was alerted by
AV software an attack was trying to install �les and I had no UAC pop
up to tell me some was accessing or trying to access the system . the
system crashed and I had to do a repair of the RC install and logs were
lost or some deleted as I could not �ne them but there were 2 new
folder n the system 32 that were not part of the install and had nothing
in them.

I did not see this happen in Firefox or Flock when testing only in IE 8
and on IE 7 in XP does the pre-load video in a search using Bing seem

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 26/61

to have problems.. Files and Data are being search for when you are
using Bing. in IE8 on the Win7. it was even more aggressive in searching
my system in some of my testing. IE8 is something I would never use or
tell my client to use but as we know many new users and other that just
do not understand secuirty as we do will use Many end users are
clueless to theses issues with Ms and how bad these holes are. I re-
posting info to this site to Clients and media the more info we get out
should get MS to do something I would hope

CC

link8583

June 19, 2009 at 8:48 am

“There is no “do you want to temporarily switch to root to allow this
thing to work” prompting, because everything (with few exceptions) is
designed to run strictly in userland.”

Windows only asks you administrator rights when you want to do
something that has system wide consequences (change the time/date,
install an application, install an update, register an activex control,
start/stop a service, alter a system �le or a �le you are not allowed by
ACLs to write to, …).
Everything else runs as limited user without UAC prompts.

Could you give us an exemple of something on windows that prompts
the user for admin rights, but not on linux?

” If you need root (typically for application installation and a few other
things), you go through the simple process to become root, execute the
operation and logout of root, back to the unprivileged identity. No UAC.
No prompting. Just an alert that says “no can do” and the ability for the
user to then take manual steps to elevate themselves for the task at
hand.”

that’s much more complicated and time wasting than just clicking on
“Continue” when the uac prompt shows up.

“Again, a serious question and not a �ame: What is stopping Microsoft
from doing the same thing? Thanks.”

the users.
Windows users just want the task done. They don’t want to worry with
security. That’s why Windows 7 UAC with reduced ef�ciency was so well
received by journalists and users who don’t care if there is a side effect
on security.

http://www.julien-manici.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 27/61

But the best approach was the Vista UAC one. Much more simple that
the linux approach where you have to type the root password to give
root rights to an application. And it is not less secure (a malware could
not automatically click on continue to gain admin rights).
Finally, to get a good security level on windows 7, just set the uac to his
max level, the same as on Vista.

“In testing last of win 7using IE8 to test Bing I had an attack that did
take advantage of this hole.”

I would be really surprised if a malware would already try to exploit ANY
Windows 7 speci�c �aw, as it is a lot of work for hackers for less than
0.5% of potential victims.

In fact this �aw in UAC cannot be exploited to run malware from the
web. There need to be another �aw for this (or the user needs to lauch
an infected exe).

“I was doing a random search in Bing and was noting that action were
being done in the background wile Bing was loading . i was alerted by
AV software an attack was trying to install �les and I had no UAC pop
up to tell me some was accessing or trying to access the system .”

Most antivirus alert the user when they detect that the site you visit is
trying to exploit some security �aws to install malware, even if your
system is not vulnerable and even if you are not at risk at all. Some
people believe that the antivirus has prevented them from being
infected, but it’s wrong, it has just alerted them that the site contains
malicious code : for example, this code would try to exploit a �aw in
quicktime although you don’t have quicktime installed, but you will still
get the antivirus alert.

” the system crashed and I had to do a repair of the RC install and logs
were lost or some deleted as I could not �ne them but there were 2 new
folder n the system 32 that were not part of the install and had nothing
in them.”

that could be an unrelated crash, or it could be caused by malware you
already had in your system (by installing a malware infected software)
but whose activity was only detected later by your AV (with newer virus
de�nitions).

“I did not see this happen in Firefox or Flock when testing only in IE 8
and on IE 7 in XP does the pre-load video in a search using Bing seem
to have problems.. Files and Data are being search for when you are

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 28/61

using Bing. in IE8 on the Win7. it was even more aggressive in searching
my system in some of my testing.”

what do you mean by “�les and data are being searched for when using
bing”?
maybe you installed a malicious software that installed a BHO in IE. But
IE is probably not the origin of your problem, as there are no know 0day
critical �aw in IE, and even if there was any �aw, the protected mode
should prevent any malware from writing on the hard disk.

Could you give us the link to the page where you pretend to have been
infected?

“IE8 is something I would never use or tell my client to use but as we
know many new users and other that just do not understand secuirty as
we do will use Many end users are clueless to theses issues with Ms and
how bad these holes are. I re-posting info to this site to Clients and
media the more info we get out should get MS to do something I would
hope”

actually, IE7 and 8 on vista and windows 7 are more secure that any
other browser.

People who don’t understand security use to install a lot of software
from potentially malicious source (warez, unknown websites), and then
complain Windows is unsecure or that IE is full of toolbars and crappy
BHO/plugins.

James
Butler

June 19, 2009 at 9:10 am

“Could you give us an exemple of something on windows that prompts
the user for admin rights, but not on linux?”

Installing an application like Firefox or installing a printer come to mind,
among many others. You should try it!

“that’s much more complicated and time wasting than just clicking on
“Continue” when the uac prompt shows up.”

I believe this is precisely the problem with the Microsoft “multi-user”
model. After a very brief period of time, the UAC becomes irrelevant as
the vast majority of Windows users will just click OK regardless of what
the prompt is telling them, because they are impatient to �nish
whatever they did that triggered the prompt. And with regard to the
exploit/feature being discussed, the UAC IS irrelevant, as this

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 29/61

exploit/feature bypasses/disables UAC, anyway, so the UAC clearly is
just a “security blanket” and does nothing serious with regard to system
security.

“In fact this �aw in UAC cannot be exploited to run malware from the
web. There need to be another �aw for this (or the user needs to lauch
an infected exe).”

Read the article and followup notes. When this “feature” is exploited,
the user will never know the web page they just visited dropped a rootkit
onto their system.

“actually, IE7 and 8 on vista and windows 7 are more secure that any
other browser.”

Do you have any data that supports that? ANY browser that does NOT
access Windows core is more secure.

So, aside from “the users”, why can’t Microsoft follow the Linux example,
technically? I imagine their developers are quite skilled at working within
userland … or is it simply that you cannot build anything serious in
win32 WITHOUT tapping into the Windows core?

Thanks, again. I really want to know why Microsoft is so resistant to
following the proven security practices of every other major operating
system out there.

link8583

June 19, 2009 at 10:10 am

“Installing an application like Firefox or installing a printer come to mind,
among many others. You should try it!”

last time I checked, I needed root rights to setup Opera on linux ^^
When you install a program that is shared with all users (in program
�les), you need admin rights. But if you install a program in your user
pro�le (as does chrome by default), you don’t need admin rights. You
can install �refox in a folder you have write access to, and you won’t
need admin privileges.

When installing a printer, you will need admin right to install drivers to
the system, since it is a system wide action. But if you plug a printer
whose driver is included in windows, you don’t need admin rights.

“I believe this is precisely the problem with the Microsoft “multi-user”
model. After a very brief period of time, the UAC becomes irrelevant as

http://www.julien-manici.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 30/61

the vast majority of Windows users will just click OK regardless of what
the prompt is telling them, because they are impatient to �nish
whatever they did that triggered the prompt.”

yes, but even if they had to log out and type a password to log on as
root to setup some crappy software, they would do so. After all, they
can’t live without that video codec that a random porn site suggested
them to install…

“And with regard to the exploit/feature being discussed, the UAC IS
irrelevant, as this exploit/feature bypasses/disables UAC, anyway, so the
UAC clearly is just a “security blanket” and does nothing serious with
regard to system security.”

At his highest setting, UAC does protect the system, as malware can’t
gain admin privilege without the user approval.
But even at his default/medium setting, althoug this �aw allow malware
to gain admin privileges silently, malwares can’t auto elevate from
Internet Explorer sandbox, so UAC is usefull for IE users, at least.

Nevertheless, the UAC highest protection setting on Windows 7 does
protect the user from system wide malware installations.
However, nothing under linux, osx or windows protects the users from
usermode malwares (which can send spam, steal credit card numbers,
show unwanted ads, delete user �les, do DDoS attacks, spread in IM
clients …)

“Read the article and followup notes. When this “feature” is exploited,
the user will never know the web page they just visited dropped a rootkit
onto their system.”

wrong, you misunderstood the article.
The �aw only allows an already running malware to elevate silently his
privileges from usermode to administrator. This �aw does not allow an
hacker to run a malware onto users PC. There need to be another �aw
for this, or the hacker needs to convince the user to download an
infected �le and run it himself. Then the malware can get admin
privileges and install as rootkit with no UAC prompt.

“Do you have any data that supports that? ANY browser that does NOT
access Windows core is more secure.”

yes, just read the previous comments.
IE and its plugins (�ash, adobe reader) run in low integrity mode. A
malware exploiting a 0day �aw in IE or its plugin will run in low integrity,

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 31/61

and thus cannot install in user mode (write forbidden), nor exploit the
UAC �aw to gain administrator privileges.

IE doesn’t run into the windows kernel, contrary to what some people
think.
It is a user mode application that calls the same system routines as any
other browser or other application.
The only difference is that some applications from Microsoft (including
the windows sidebar) and third party editors use the IE engine to build
their user interface, which makes the IE rendering engine a fundamental
component in windows (that won’t even be removed from Windows 7 E).
This does not have any security consequence, but this explains why you
have to restart to install an IE update (because IE �les can be in use at
any time, even when IE is closed).

“So, aside from “the users”, why can’t Microsoft follow the Linux
example, technically? I imagine their developers are quite skilled at
working within userland … or is it simply that you cannot build anything
serious in win32 WITHOUT tapping into the Windows core?”

I never have any UAC prompt in my day to day use of Windows Vista,
except when some applications like adobe reader, �ash, java or �refox
tries to update themselves. They need administrator rights to update
their own �les, since their auto updater runs in usermode. That’s not
windows fault, these application could install a plani�ed task that run
once a day as administrator to search for updates and install them
without prompting users for admin rights, but they don’t… Maybe in the
future they will, and you won’t see any UAC prompt, except if you install
a new software or change a system wide setting.

I am developper, and I never need administrative privileges in my
applications (except one which changes the login screen wallpaper, but
that’s normal since it is a system wide setting). There is nothing missing
in Windows that prevents developpers from writing usermode friendly
applications.

“Thanks, again. I really want to know why Microsoft is so resistant to
following the proven security practices of every other major operating
system out there.”

nothing prevents you from creating a limited user account to feel the
same as if you were a limited user under linux or windows…
But in Windows Vista (or Windows 7 with uac at his highest level), you
already have the same level of protection as a limited user account
under linux or windows, except that it is much more easy to install

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 32/61

software or change a system setting since you just have to press
continue instead of having to type a password. It is NOT less secure.

Leo
Davidson

June 19, 2009 at 10:27 am

James, I’m not sure what you mean by “the Windows core.”

All web browsers access the Windows API in pretty much the same way.
IE ships with Windows, and components within IE like the HTML
rendering engine are used by other programs (not just parts of Windows
itself but third-party apps as well), but I don’t think any of that poses a
risk, except by its popularity. (I am not an IE fan, FWIW, but that’s due
to features and UI.)

link8583 is right in that this UAC stuff is not what gets exploited for
malware to run from the web. UAC’s job isn’t to prevent things from
running; it’s to enable or prevent things from elevating.

Once code is running it could use the UAC �aw to gain higher access,
but the �aw itself won’t get the code on the box in the �rst place, it’ll
just allow it to do more damage or hide itself better if it gets on. IMO
that’s still important (if there’s any importance to the difference
between code running as admin and non-admin at all, which I believe
there is). (Flaws which let code get on a box are *more* important, but
when they keep being found it seems a good idea to try and limit what
they can do.)

I also agree with link8583 that it’s highly unlikely anyone is using this
�aw in any current malware. It just wouldn’t be worth it yet when
machines running XP are such a rich target. If MS don’t improve things
by the time that Win7 is obiquitous then we might start to see things
use this �aw to do more damage, in conjunction with some separate
exploit or trojan, because they will have to target Win7 and will assume
the default settings are the richest thing to attack.

People on both sides of this discussion seem to be confusing the UAC
issue with one which allows code to get running on a box. The UAC
issue isn’t about that. UAC itself isn’t about that, so a �aw in UAC
cannot, by de�nition, have anything to do with whether or not code can
get on a box. It’s about what code can do once it’s on the box. (e.g.
Install as a rootkit, change security/�rewall settings, infect other users,
etc.)

http://www.pretentiousname.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 33/61

hd

June 19, 2009 at 4:04 pm

@Leo
Am I to assume that pushing the slider up in the UAC control panel will
solve this issue?

Leo
Davidson

June 19, 2009 at 7:54 pm

@hd: Yes, at the Always Prompt level it’s like Vista was by default.

Alternatively, for people who think everyone will click every prompt and
there’s no value in forcing elevation to wait for user consent and always
trigger some kind of (possibly spoofed) prompt, setting UAC to Silently
Elevate (for all apps) also makes sense.

But, IMO, the defaults make no sense from either point of view.

Leo
Davidson

June 19, 2009 at 10:26 pm

There’s an interesting post by someone who worked on UAC, Chris
Corio, here:

http://www.withinwindows.com/2009/06/10/uac-uac-go-away-come-
again-some-other-day/comment-page-1/#comment-3987

It’s great of Chris to engage with us in this discussion with both
background info and his own take on the current situation.

I’ve posted a response below his.

James
Butler

June 20, 2009 at 5:05 am

Leo (and one more to you, below):

“All web browsers access the Windows API in pretty much the same
way. IE ships with Windows, and components within IE like the HTML
rendering engine are used by other programs (not just parts of Windows
itself but third-party apps as well)”

Why is this? Why doesn’t IE run discreetly? There is a huge difference
between installing Firefox on Linux and installing Firefox on Windows in

http://www.pretentiousname.com/
http://www.pretentiousname.com/
http://www.withinwindows.com/2009/06/10/uac-uac-go-away-come-again-some-other-day/comment-page-1/#comment-3987

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 34/61

that on Linux, Firefox brings its own code. It’s true that it uses whatever
graphics rendering engine is already being used by the system (i.e. cairo
or whatever), however it does not need to access any system �les to
function. Your explanation extends my questions in that MSIE, itself,
contains code that other, third-party apps need to use in order to
function within Windows. Take away MSIE HTML rendering engine, and
what breaks? Why is it necessary to rely on system-level dll �les and
whatnot in Windows? And describing the shared elements within MSIE
as non-system-level �les is simply not correct. In order for them to be
shared, they must be accessible on a system-wide basis, which makes
them “system-level” �les.

This is the “Windows core”: Any �les required by all users. This is
different from “shared” �les that are simply permissive. If any app
installed in userland is required to use a �le but that restricted-rights
user cannot delete or modify it, that �le is a system-level �le.
Iexplore.exe is one of those �les. Firefox.exe is not.

link8583:

“yes, but even if they had to log out and type a password to log on as
root to setup some crappy software, they would do so.”

Um … not exactly how it works, but it does show one of the issues with
communicating to people who are unfamiliar with Linux. You don’t need
to log out, you ‘su’, and there’s no pro�le switching, like there is in
Windows, so the switch is nearly instantaneous … all of a sudden, you
ARE the elevated user. Besides, the behavior you describe is advanced
behavior that the majority of Windows users would not engage in, if they
were forced to do so. That would help protect them, IMHO, and in the
opinion of others here. The UAC prompt is there to provide a simple way
for limited user identities to elevate their privileges so that a program
that requires access to protected �les is allowed to do so without the
user needing to log out and log back in with elevated privileges (“Switch
User”). The simplicity of that mechanism is part of its problem in that it
becomes less of a security mechanism and more of an annoyance to the
limited user, and will frequently cause them to simply acknowledge the
prompt without understanding its implications, and possibly suffering
from unintended exposure as a result.

If limited Windows users did not have the UAC, but simply received a
notice that they needed administrator rights in order to execute the
current action, there would be far fewer “accidental” installations of
malware on Windows systems, because limited users would be *forced*
to “Switch User”, just like Posix users are … an inconvenience that
would result in much greater protection for their system, as they are

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 35/61

forced to consider whether they really want to take the requested
action. It’s not just a “stupid thing … click” activity, it becomes a “oh
man, do I really want to?” activity, which logically would result in fewer
such actions being taken on a casual basis. And part of the problem is
that it IS a much greater inconvenience for Windows users than it is for
Posix users, because in Windows, switching users takes a minute or
more as a second pro�le is loaded into the system, along with additional
desktops and other user-related elements, where in a Posix system it
takes just a moment for the su to occur, and only a moment to switch
back when the task is accomplished.

This is completely compatible with the topic of this discussion which
questions the ef�cacy of the UAC as it is currently implemented within
Windows 7. Quoting from the article:

“RCE by itself warrants some attention, but with the introduction of
default UAC policy in Windows Vista, the potential impact of RCE
vulnerabilities were actually reduced because the malicious code can no
longer assume full administrative privileges, instead, limited to what the
target application was running which in most scenarios was medium-level
or even low-integrity like in Internet Explorer. However, in conjunction
with the default Windows 7 UAC policy and this vulnerability, the
potential impact of RCE vulnerabilities is raised, as the malicious code
executed could silently elevate itself to have much more free reign over
the system than before. If this isn’t enough indication that the default
security policy in 7 is worse than Vista, than I don’t know what is.”

And:

“UAC prompts be only a waste of their time. I say this because if some
applications can elevate themselves with or without the user agreeing to
a prompt, the prompt’s effects are nulli�ed. To look at it in another light,
at the default Windows 7 UAC policy, it’s as good as having UAC
prompts turned off entirely.”

So the UAC in Vista was acceptable to the author in limiting the impact
of RCE attacks, however with Windows 7’s default UAC policy, “the
potential impact of RCE vulnerabilities is raised” and “it’s as good as
having the UAC prompts turned off entirely”. Does this not indicate that
the UAC as implemented in Windows 7 is a badly implemented security
tool?

Continuing the quote from the article:

“Secondly, besides the obvious malicious use for the UAC vulnerability,
there is nothing stopping it from being abused by legitimate developers

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 36/61

and their applications. After suggesting such a scenario in my original
article, one such developer have already expressed interest in using this
vulnerability in such a way that will remove UAC prompts from his
applications.”

When any developer can simply disable the UAC, then it is irrelevant. It
is no longer a system protection device except in the most super�cial
terms.

Leo (quoted from your posts above):

“Low-integrity IE doesn’t help with Flash vulns. because Flash is still
hosted inside a medium-IL proxy process for compatibility.”

So the fact that MSIE is a low-integrity process means nothing when it
hosts medium-IL processes, if those processes can execute potentially
dangerous code.

And:

“..it’s now so easy for code to silently and immediately bypass the UAC
prompts and jump from the limted-admin token to the full-admin token.”

Which seems to indicate that your testing shows potential exploitation
of a vulnerability through a rigged app that runs at medium-IL within the
low-intensity MSIE process … like a rigged Flash movie. Which seems to
indicate that simply visiting a rigged web page could silently execute
dangerous code without a UAC prompt.

And, without any malice toward Microsoft products, this is not an issue
with Linux because there is no UAC … there is simply a notice that the
user must intentionally and explicitly allow the execution of the code by
taking the extra security step of deliberately switching user (su) to an
elevated account.

If the Windows 7 process in its default setting were not so easily
disabled/bypassed by any developer that so wished, it might be a
convenience that worked well. As it is, it is an INconvenience that is
irrelevant to the security of the system, GIVEN THE TOPIC OF THIS
DISCUSSION. (Trying to stay in context, here.) The author agrees, as did
you, Leo.

Please forgive me if all of these statements have led me to become
confused about the issue. It seems quite straightforward. If Microsoft
wanted a multi-user security model that has been proven effective for
decades, why is it so tough to start with the Posix model?

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 37/61

Thanks for your patience.

link8583

June 20, 2009 at 6:45 am

“Why is this? Why doesn’t IE run discreetly?”

What would be the bene�t to have an IE installed the same way as
Firefox on Windows 2000/xp/vista/linux or IE2/3 for Windows 95?
There would be NO bene�t on security.

“There is a huge difference between installing Firefox on Linux and
installing Firefox on Windows in that on Linux, Firefox brings its own
code. It’s true that it uses whatever graphics rendering engine is already
being used by the system (i.e. cairo or whatever), however it does not
need to access any system �les to function.”

Firefox calls system and C runtime APIs, so indirectly, there is system
�les needed for it to run, as for any software. And if you don’t have an
X11 server installed it will not run.
IE has not fundamentaly more “system �les requirements” than Firefox
or any application to run (it calls GDI, Win32 and C runtime apis. It does
not interact with the kernel and it doesn’t have any component running
in the kernel).

“Your explanation extends my questions in that MSIE, itself, contains
code that other, third-party apps need to use in order to function within
Windows. Take away MSIE HTML rendering engine, and what breaks?”

explorer.exe (�le explorer, control panel) relies on IE engine to display
parts of some windows. Of course, this runs as user mode.
The windows sidebar uses IE engine to run and draw the gadgets.
In fact, more than a third of all applications available for Windows need
Internet explorer engine to run.
Ex:
ATI driver installation program uses IE to display some nice but unusefull
pictures during install.
Microsoft CHM help viewer uses IE engine to show help pages.
Many C/C++/.net based programs uses IE to draw rich user interfaces
because it is easier than using directly GDI.
Even Google update (which can be used to install chrome) uses IE to
draw it’s html based user interface!
Some bittorrent clients, download managers, rss readers, Eclipse IDE
(java based development enrionment), tens of thousands popular
applications need IE engine to run properly.
Think of IE engine as a library that any developer can use.

http://www.julien-manici.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 38/61

“Why is it necessary to rely on system-level dll �les and whatnot in
Windows? And describing the shared elements within MSIE as non-
system-level �les is simply not correct. In order for them to be shared,
they must be accessible on a system-wide basis, which makes them
“system-level” �les.”

yes, components of IE are part of every version of Windows since
windows 98, thus, IE rendering engine �les are system components that
are guaranteed to be always present in windows, even in Windows 7 E.

“This is the “Windows core”: Any �les required by all users.”

At the time of windows 95, IE was not included in windows, but many
application began to require IE4 to be installed to run.
This doesn’t make IE a “windows core component”, as Windows base
services don’t need IE to run.

“This is different from “shared” �les that are simply permissive. If any
app installed in userland is required to use a �le but that restricted-
rights user cannot delete or modify it, that �le is a system-level �le.
Iexplore.exe is one of those �les. Firefox.exe is not.”

by default, �refox installs in program �les, and users can’t write or
remove �les in �refox install. So, does �refox becomes a system �le in
this situation?

“Um … not exactly how it works, but it does show one of the issues with
communicating to people who are unfamiliar with Linux.”

Linux was my main OS 9 years ago… So, I’m pretty familiar with it.

“You don’t need to log out, you ’su’, and there’s no pro�le switching, like
there is in Windows, so the switch is nearly instantaneous”

exactly like the runas /nopro�le command included in windows since
NT4.
But if you type the admin password in an user session, a malware could
potentially read it by spoo�ng your terminal Window. (very easy)
It’s less secure than logging out and logging in as root.
Even worse, if you use SU to setup a package downloaded and stored in
your user pro�le, if you have a malware running in your session, it can
infect the rpm/deb �le to gain root privileges when you install it. This
problem also exists on Windows.

“The simplicity of that mechanism is part of its problem in that it
becomes less of a security mechanism and more of an annoyance to the
limited user, and will frequently cause them to simply acknowledge the

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 39/61

prompt without understanding its implications, and possibly suffering
from unintended exposure as a result.”

if users ran a linux distribution that told them ‘access denied’ when they
want to setup an application, of change a system setting (as it was the
case until windows vista when running as Limited User Account), then
they would run as root to avoid these “limitations”, and it would be even
worse. So uac is a better solution. In fact, many linux distributions use a
similar mechanism to elevate users rights when launching a system
control panel.
I’ve even seen a netbook at a store that ran a linux distrib as root by
default, because it is “easier” to use this way…

“So the UAC in Vista was acceptable to the author in limiting the impact
of RCE attacks, however with Windows 7’s default UAC policy, “the
potential impact of RCE vulnerabilities is raised” and “it’s as good as
having the UAC prompts turned off entirely”. Does this not indicate that
the UAC as implemented in Windows 7 is a badly implemented security
tool?”

The problem only resides in the default UAC con�guration which can
allow malwares to elevate silently.
This is not possible when the UAC settings are changed to the maximum
level of protection (the same as the default settings on vista).

“When any developer can simply disable the UAC, then it is irrelevant. It
is no longer a system protection device except in the most super�cial
terms.”

That’s the problem of this �aw. But it is not exploitable when uac is set
to maximum ef�ciency.
But even in the default settings, UAC still protects Internet Explorer
users, as malwares can’t auto elevate using this UAC �aw from a
potentially vulnerable iexplore.exe process. In this case, a malware could
not even write to the user pro�le to install an usermode malware.

“So the fact that MSIE is a low-integrity process means nothing when it
hosts medium-IL processes, if those processes can execute potentially
dangerous code.”

read my answer about that. Leo was wrong, Flash and Adobe reader run
as Low-IL inside iexplore.exe process. Thus, UAC protects the user from
�aws in these plugins.

“Which seems to indicate that your testing shows potential exploitation
of a vulnerability through a rigged app that runs at medium-IL within the

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 40/61

low-intensity MSIE process … like a rigged Flash movie. Which seems to
indicate that simply visiting a rigged web page could silently execute
dangerous code without a UAC prompt.”

no, since �ash runs inside IE security context, as Low IL.

“And, without any malice toward Microsoft products, this is not an issue
with Linux because there is no UAC … there is simply a notice that the
user must intentionally and explicitly allow the execution of the code by
taking the extra security step of deliberately switching user (su) to an
elevated account.”

I suppose that depends on the distribution you’re using.
On ubuntu, there are prompts similar to UAC when you launch system
control panels.
As I said before, if mainstream users were to use linux, they would run
as root because they couldn’t stand having to logout to install new
crappy unusefull software. That’s a sad fact. At the moment the users
knows about the root account, they will think it is better than the limited
user account, because it is less annoying.

“If Microsoft wanted a multi-user security model that has been proven
effective for decades, why is it so tough to start with the Posix model?”

Windows is not less secure than any posix system.
In fact Microsoft knows how Unix works, because they used to develop
and sell an Unix based OS called Xenix in the 80’s.
Then they built OS/2, then Windows NT with the same security features
as any unix system.

The only problem is that by default, for making administration easier,
every Windows NT based system creates an administrator account by
default.
Since users almost always use the default con�guration, everybody ran
and is still running as administrator (and most developpers assumed it is
always the case, thus making their application often not compatible with
limited user accounts), althought limited user accounts exists since 1993
in Windows.
Windows is not less secure than Unix/Linux in any way. The same
fundamental user/security concepts are implemented in Windows and
Unix. The only difference is the OOBE.

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 41/61

James
Butler

June 20, 2009 at 7:26 am

link8583:
‘then they would run as root to avoid these “limitations”’

Again: You CAN’T log in and run the system as root on most modern
Linux desktops.
You MUST su from a limited account if you need root.
You CAN (and most DO) run as a full-on Administrator in Windows.
THAT is a HUGE difference in security models, wouldn’t you agree?

I think you are the only person here who is not advocating that
Microsoft needs to change their basic security model so that by
DEFAULT, a Standard User is the primary identity. Even Microsoft techs
are saying that, but they are unable to implement it, according to Leo’s
link, above.

If you’re going to argue that MSIE 2&3 under Windows 95 (!) proves that
Windows 7’s implementation of MSIE 8 means that MSIE 8 is not a
system-level program, then I’ve got nothing to say to you. If MSIE 8
were not a system-level program, then it could be easily and completely
removed, just like any userland app. You’re not making sense … you’re
just trying an argument for the sake of defending Windows. Your
comments about installation and removal of Firefox seem remarkably
uninformed. Have you TRIED deleting/renaming/uninstalling Firefox as
the limited user who installed it in Linux? It’s quite different from doing
the same thing in Windows.

Frankly, your claims of having used Linux as your “main OS” seem
exaggerated. You reinforce my point when you ask about Firefox
installing in Program Files within Windows … a situation ONLY made
possible by the fact that you MUST install Firefox as an administrator in
Windows! Where did you install your programs when Linux was your
“main OS”? I can assure you that it was NOT in a protected directory,
unless you mistakenly became a root-level user and installed it into a
protected directory while using that identity. Becoming root is ONLY
required for the VAST majority of Linux app installations ONLY during
the �nal build process, when protected libraries MUST be accessed in
order to complete the build speci�c to that system. EVERY other part of
the installation process is EXCLUSIVE to userland, and root is NOT
required to uninstall an app unless you made the mistake of installing it
while you were root.

I am not defending Linux. I am simply asking if anyone here can tell me
why Microsoft has chosen to continue their efforts at creating a security
model that completely ignores the success of the Posix model. I want to
understand the limitations of the platform that have forced MSFT to

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 42/61

take this route, so that I can better explain to my clients why things are
the way they are. When those who frequent this thread AND at least
one of the developers of the security widget in question IN THIS
ARTICLE all admit that it’s a broken model, I think my question is
reasonable.

I have already been attempting to answer queries from my clients about
Windows 7, MSIE and the UAC, and the only answer I have for them at
the moment is, “It’s like that because Microsoft is trying to improve the
security of their products.” This is a lame explanation, and does nothing
to satisfy my actually intelligent clients who are considering moving from
Linux to Microsoft.

If you really are a Windows advocate, beyond posting super�uous
arguments about irrelevant operating systems, then give me something
correct and immediate to support Microsoft’s position. Otherwise, it’s
easier and more true for me to say, “You are already using the best
security model available, and Microsoft will need to start from scratch to
overcome their security issues because they have been on the wrong
track for the past 10 years.”

Why CAN’T Microsoft use a similar multi-user model? What’s stopping
them?
This is a basic question about a serious issue.

Sorry about the long posts. Thanks, again for any SERIOUS attempt to
answer a TECHNICAL question.

Leo
Davidson

June 20, 2009 at 8:27 am

James, everything link8583 says is reasonable and I also agree with
most* of it.

(*I’d say “all” but I haven’t re-read every word to con�rm that.)

I don’t think he’s advocating anything as if it was a perfect solution, he’s
just explaining how things are.

Whether or not IE is system-level is a matter of semantics. It depends
whether you consider the user/application-level components that come
with Windows as a part of the OS or just something that comes with the
OS. Technically, you can boot Windows without IE or Explorer. A lot of
software won’t work because a lot of software assumes those
components are available, but they are not inherently required by the
OS.

http://www.pretentiousname.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 43/61

Component re-use is a GOOD thing, as is an OS that comes with lots of
useful components. There’s no sense in every developer re-writing code
that already someone has already written and is willing to share, unless
a signi�cantly different component is wanted. I’m glad somebody wrote
Firefox as I prefer it to IE but I’m also glad that when I just want to
display a bit of HTML in an About window in my own app I can use the
MSHTML component (part of IE) to avoid having to spend six months
writing my own HTML rendering engine. I’m also glad that I can depend
on MSHTML being on people’s machines already and not have to tell my
users to download some extra thing or include that large component in
my own app’s installer.

“Becoming root is ONLY required for the VAST majority of Linux app
installations ONLY during the �nal build process, when protected
libraries MUST be accessed in order to complete the build speci�c to
that system.”

That is something many people wish MS would improve. They cannot do
much about existing installers as there’s no way to know what rights an
installer — which is just an exe �le really — will need. But it would be
nice if new installers could say “I just need to copy these �les to my own
folder in Program Files” and be given rights to do just that, rather than
full admin rights. Eventually we’d expect all installers to declare what
access they needed and be more suspicious of ones which didn’t.

For example, I’m still pissed off that installing Daemon Tools installed,
without my knowledge or consent, a root certi�cate authority which
meant that I was allowing some third party I knew very little about to
vouch for code signatures on stuff I downloaded. I don’t want any
installer to have those rights without me knowing about it, but as it
stands today all installers get those rights.

(It’s not that I think the people behind that root CA will do something
malicious, but I know nothing about the company and how well they
protected that certi�cate from being stolen. Most of all I resent the fact
that some extra root CA was put on my system to, as far as I can tell,
save some company the small cost of getting their code signed by one
of the main CAs like everyone else does.)

James
Butler

June 20, 2009 at 8:59 am

Thank you for the response, Leo. While I don’t believe that link8583 has
provided correct information much of the time, I respect your right to
agree with it.

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 44/61

link8583 is defending Windows the way it is, and is not saying WHY,
except that “it is easier for the user” … which also, in this case, means it
is less safe. link8583 brings up one particular Linux distro, Ubuntu, when
describing behavior similar to the UAC, in that under recent versions of
Ubuntu, one is able to su without launching a command prompt. Other
distros also use this feature.

But this is not to be confused with the underlying security model.
Windows uses a split token. Linux uses separate tokens. The split token
is vulnerable in some situations simply because it is a single entity. So
my question comes down to: What is so valuable about the split token
that Microsoft believes, despite continuing evidence (this article’s proof
of concept, among many others) that it is a worse security model than
the one used by Posix systems?

Why reinvent the wheel? (as you noted):

“There’s no sense in every developer re-writing code that already
someone has already written and is willing to share, unless a signi�cantly
different component is wanted.”

I agree with that, while still thinking that MSIE is, in fact, a �le manager
that is able to access url-de�ned locations rather than a “web browser”,
and, as such, is not in the same class as a “web browser”, and as such is
less secure than a “web browser” should be. But in Microsoft’s
engineering case, they created a big security hole when shared �les are
system �les … because when a system �le gets compromised, it
exposes the system. When a userland �le is compromised, that only
affects the userland … not the system.

In the case of the Microsoft multi-user security model, it is continuing to
be proven that what they have been doing is adding more layers on top
of their system rather than simplifying and returning to a model that is
demonstrably more secure and only moderately more effort for the end
user. (Every process takes training. No computer use is “intuitive” until a
person has already developed a relationship with it.)

The Chris Corio article you linked to indicates that he (and probably
other MS developers) WANTED to keep the UAC as a security model,
but could not as it was proven to be unreliable for security purposes,
even as they are proud of what they have done with the split token.
Maybe its a political thing … Microsoft doesn’t want to admit that they
have been pursuing a �awed model or something. I don’t know. But I DO
know that I have yet to see any technical explanation as to WHY the
Posix multi-user security model was not used, or at least why Microsoft
insists on continuing to follow their current path.

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 45/61

If the answer is not available, that’s �ne. It is a question which I have
often been asked, and I have yet to be able to answer it, so if I still can’t
answer it, so be it. Thanks, again.

James
Butler

June 20, 2009 at 9:14 am

Sorry ..

“What is so valuable about the split token that Microsoft believes …
that it is a BETTER security model than the one used by Posix
systems?”

(To much crap … not enough continuity.)

James
Butler

June 20, 2009 at 9:16 am

One more try … although I hope my point was already made …

“What is so valuable about the split token that Microsoft believes,
despite continuing evidence TO THE CONTRARY (this article’s proof of
concept, among many others), that it is a BETTER security model than
the one used by Posix systems?”

(Done.)

Leo
Davidson

June 20, 2009 at 9:42 am

“But this is not to be confused with the underlying security model.
Windows uses a split token.”

Windows doesn’t have to use a split-token account, it’s just the default.

I think the reason Windows doesn’t make (or at least encourage) people
to use Standard User accounts is that they’d be too annoying to use
right now for the average home user. The reaction to Vista’s UAC
prompts was bad enough; making people put up with the same prompts
where they have to type a password every time would have terrible
results. MS have a lot of work to do in this area, IMO, if they seriously
want home users to switch to Standard User accounts one day.

http://www.pretentiousname.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 46/61

Big corporate Windows installs will almost always make everyone use
Standard User accounts, though. Windows can do it, and home users
can choose to work that way if they want. It’s not the default, out-of-
the-box setup but it is completely possible. (The PC that runs my TV
runs with a Standard User account, for example.)

The split-token stuff was new in Vista. Before that the NT-based OS
(e.g. NT3.51, NT4, Windows 2000, XP) didn’t have such a thing; they
had Standard User and Administrator (without the split token). (Vista
and Windows 7 still have those account types, but they’re not the
default.)

With XP and earlier OS, almost all home users ran as admin and so a lot
of software aimed at (or written by) home users assumed admin rights.
MS rightly wanted to change that but wanted to do so in a way which
wasn’t too inconvenient and didn’t break too much existing software by
default, so the split-token stuff was created with, I presume, the
intention of not requiring a password to be entered to switch from non-
admin to admin.

When Vista came out people had to run a lot of their apps as admin
(that is much better now) and people wouldn’t have put up with typing a
password every time they wanted to start an app. The split-token
account was a pretty good compromise, I think.

Also note that with a standard user account, if you still use elevation
then things can slip through from standard user to admin. If you use
elevation at all then there is always that risk. The isolation of the two
modes is better with standard user but it is not (and cannot be)
absolute.

“I agree with that, while still thinking that MSIE is, in fact, a �le manager
that is able to access url-de�ned locations rather than a “web browser”,
and, as such, is not in the same class as a “web browser”, and as such is
less secure than a “web browser” should be.”

I don’t know what you’re getting at there, sorry. I don’t see why the
category a program falls into affects how secure that program is.

“But in Microsoft’s engineering case, they created a big security hole
when shared �les are system �les … because when a system �le gets
compromised, it exposes the system. When a userland �le is
compromised, that only affects the userland … not the system.”

IE lives in the userland. IE isn’t part of the kernel.

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 47/61

I’m not sure exactly what you mean by “compromised” there but if a
component of IE is compromised it is no different to a component of
Firefox, or some shared library like gzip, or whatever, being
compromised.

James
Butler

June 20, 2009 at 10:36 am

“I don’t know what you’re getting at there, sorry. I don’t see why the
category a program falls into affects how secure that program is.”

A “web browser” SHOULD NOT require hooks into the system �les. It is
an extremely exposed, public face and needs to be kept as separate
from the underlying OS as possible. Internet Explorer provides many
system �les, as you noted with regard to the HTML rendering engine,
for example, and is therefore less of a “web browser” and more of a
“system” application. I mentioned this in response to your statement,
“I’m also glad that I can depend on MSHTML being on people’s
machines already and not have to tell my users to download some extra
thing or include that large component in my own app’s installer.” If the
HTML rendering engine were NOT part of MSIE, that would be great …
but it is an integral part of MSIE and that changes things quite a lot.
MSIE is a special class of application and provides many system-level
�les like the HTML rendering engine. This is one of the many reasons
why it has been dif�cult for Microsoft to remove it completely from the
system … it IS a part of the OS, and not simply something that CAME
with the OS.

When a system-level application is compromised, it is far more
dangerous to the system than when a userland application is
compromised, as long as userland/system segregation is enforced.

“IE lives in the userland. IE isn’t part of the kernel.”

“Userland” does not include any system �les. And there is a big
difference between the kernel and the rest of the �les that make up an
OS, including the rest of the system-level �les, of which the kernel is
one … on non-Windows systems. (Have you ever tried replacing the
kernel on Windows with a newer version? Just the kernel, not a whole
upgrade pack? Try it. Works in Linux.)

It is common to “compromise” (exploit a vulnerability that leads to a
successful attack on) any computer by using a vector into system-level
�les and processes, and, since you brought it up, under Windows there
is an excellent chance of compromising the kernel, too, because other

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 48/61

system �les tie into it so heavily. (Another big difference in security
models.)

A buffer over�ow attack is a typical example. This is exactly the reason
why MSIE is a low-priority process. It’s a sort of additional protection
after so many attacks got through to the system level in earlier versions.
It is trivial to over�ow a program that accesses web pages by using
something as simple as a rigged JPEG image, including MSIE and
Firefox, and if that program were privileged enough, then it could easily
be used to “compromise” the system. MSIE does not run exclusively in
userland, and on Windows, neither does Firefox, due to the reuse of
code that you mentioned earlier. It’s cool with me if we blame that one
on lazy Firefox developers … I’m not particular. However it is possible
that building a web browser for Microsoft REQUIRES system-level �les,
because there is no alternative provided or allowed, so that would let a
few developers off the hook.

Under Linux, if Firefox were compromised by an exploit, then the worst
that could happen is that that user’s �les could be modi�ed by the
attacker and/or the attacker could add/remove stuff in that user’s
restricted space. “del C:*.* /y” simply won’t work. To repair even the
most screwed up pro�le requires removing the compromised userspace
and establishing a clean one. The rest of the system remains untouched.
Compromising the MODERN kernel is unheard of. (Find a validated
example regarding a 2.x Linux kernel and I’ll eat my words with mustard.)

Compromising the Windows kernel is not only heard of, it’s how the
most recent Windows rootkits are evading detection. Hell, they can even
get through to the BIOS on a Windows system! (Don’t get me started
on why BIOS are still being used … You’re with me on that one,
right?)

Also don’t get me started on how Windows is compromised so often by
viruses and rootkits and other malware because it is so popular. That is
one reason, de�nitely it’s a big target, but if that were the primary
reason, then Linux would be experiencing similar rates of compromise,
as it is the number one platform for web servers in the world and you’d
better believe that hackers are very anxious to penetrate them. Not to
gain access to the databases and whatnot stored on them, which
happens all the time due to poor application design, but to gain access
to the SYSTEMS from where they could both hide and control a far
greater range of activity. The difference comes down to the security
model.

This all speaks to two issues: (1) The underlying multi-user security
model and (2) how the UAC is a mechanism that seems to provide

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 49/61

security but (as Chris Corio noted) is not capable of providing security.
And yet the UAC is used every time elevation is requested.

Anyway, I’m sure it will be �ne. Windows 7 will come out, people will buy
it, security will be an issue, patches will be the result, life will go on.

I don’t think an answer to my question is available, yet.
Thanks for the article and comments. Always interesting. Bye bye.

link8583

June 20, 2009 at 12:47 pm

“You MUST su from a limited account if you need root.
You CAN (and most DO) run as a full-on Administrator in Windows.
THAT is a HUGE difference in security models, wouldn’t you agree?”

There’s no difference between using runas /nopro�le on Windows and
using su on linux.
It has the same security implications, and the same result.
But UAC on windows is easier to use than runas, and it does the same
thing when called from a limited user account, with no security issue.

Of course if you use runas or su to install an application you just
downloaded and stored in your userpro�le, if a usermode malware is
running, then you are giving it root privileges since it can have infected
the newly download application setup package.

“I think you are the only person here who is not advocating that
Microsoft needs to change their basic security model so that by
DEFAULT, a Standard User is the primary identity.”

I’m not advocating Microsoft, I’m just explaining why things are currently
this way, and why it is not that bad, since there are ways to work
securely in Windows (by using a limited user account).
There’s something that people don’t understand about Microsoft.
Security is one of their priority, but their most important priority is
retrocompatibility and productivity, because that’s all their customers
care about.
They can add security features, but if the customers don’t want to use
them, of if the software they need don’t work with these features, then
the customers won’t be happy and will stay with an older OS, or disable
some security features.
That’s what happened with companies staying on windows xp or home
users disabling UAC.
And that’s why microsoft stills creates administrator account by default,
and is now lowering UAC ef�ciency.

http://www.julien-manici.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 50/61

“If you’re going to argue that MSIE 2&3 under Windows 95 (!) proves
that Windows 7’s implementation of MSIE 8 means that MSIE 8 is not a
system-level program, then I’ve got nothing to say to you.”

I think you did not understand my point.
I was just saying that �refox and IE2/3 for windows 95 are installed the
same way: just a bunch of �les in a program �les subfolder.
Since IE4 however, IE has its components more deeply installed, in
windows system folders, but this does not makes it less secure than
�refox or IE2/3 on Windows NT4. When IE runs, it always runs with the
same privileges as the current user (except on vista and 7 where IE has
actually less privileges than the current user), no matter where its dll or
exe are stored.

” If MSIE 8 were not a system-level program, then it could be easily and
completely removed, just like any userland app.”

IE does not run as a service, it is not part of the windows core, and it is
not used by the kernel. It runs in userland. It is part of the windows APIs
that are always distributed with windows since win98.
Microsoft could remove IE, but explore.exe would need some
modi�cations to continue working, and a third of the applications built
for windows would not run anymore.

Do you know about gdiplus.dll ? that’s exactly the same question as IE.
This dll is provided with each version of windows since windows ME, and
removing it from windows would be disastrous since more than 50% of
the current applications need it to run. It could be added on Windows
98, but since it is no more supported, gdiplus.dll doesn’t ship anymore
with third party program installers (but it used to for a long time). Thus,
programs would stop working on Windows 7 if this dll was not included,
since it is no more included with most program installers.

IE and gdiplus.dll run in userland, but they cannot be removed from
windows since they are part of the windows apis and libraries.

Since they both ship with windows, you can say they are system level
components, but they run with the same level as the current user, and
windows can start without them (but not explorer.exe)

“Your comments about installation and removal of Firefox seem
remarkably uninformed. Have you TRIED deleting/renaming/uninstalling
Firefox as the limited user who installed it in Linux? It’s quite different
from doing the same thing in Windows.”

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 51/61

It’s not.
If you installed �refox for all users on linux or windows, you can’t alter
its �les with a limited user account.
If you installed �refox in your home directory on linux or your user pro�le
on windows, you will be able to alter its �les.
YOU seem “remarkably uninformed”.

“Frankly, your claims of having used Linux as your “main OS” seem
exaggerated. You reinforce my point when you ask about Firefox
installing in Program Files within Windows … a situation ONLY made
possible by the fact that you MUST install Firefox as an administrator in
Windows!”

You’re wrong.
Firefox on windows can be installed in the user pro�le. No admin right
needed.
In fact you can install many application with no admin rights. Just disable
the installation program detection heuristic in windows vista (using GPO)
to avoid UAC from prompting for unneeded admin rights, and give the
right to create subfolders in program �les to every user. Most
applications will install successfully with no admin rights. Maybe you
need to also give folder creation permission to limited users in the “all
users” pro�le.

“Where did you install your programs when Linux was your “main OS”?”

typically in /usr/bin, but the deb/rpm packages decides where the
software is supposed to be installed.
Most of the software I used to use on linux needed root rights to setup
(oracle, java, development tools, …).

“I can assure you that it was NOT in a protected directory, unless you
mistakenly became a root-level user and installed it into a protected
directory while using that identity.”

when you use mainstream distributions, you typically install software
from the distribution repository, and you need to give root rights to the
package manager, which installs the packages for all users.

“Becoming root is ONLY required for the VAST majority of Linux app
installations ONLY during the �nal build process, when protected
libraries MUST be accessed in order to complete the build speci�c to
that system.”

that’s not clear. By accessed, you mean written? And you’re saying that
the vast majority of linux app need root rights after being compiled for

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 52/61

their installation to shared folders to complete. You’re in contradiction
with your earlier bashing about windows app that need admin rights to
install.
And a usermode malware can gain root privileges in this process.

“I am simply asking if anyone here can tell me why Microsoft has chosen
to continue their efforts at creating a security model that completely
ignores the success of the Posix model.”

with 0.5% of market share, the “posix model” is not a success.
Enterprises and users rarely use linux on client side, hence the lack of
interest for malware developpers who need to concentrate on the
default target: Windows XP with user running as Administrator (and
often with no security patches). There are exactly the same security
threats on linux and on windows. Nothing prevents a malware on linux or
windows to run in userland. And once the user gave root rights to an
installer, it can do anything on the system. Look at OSX users getting
infected with malwares coming with a pirated copy of iLife and
photoshop CS4.

“I want to understand the limitations of the platform that have forced
MSFT to take this route”

the limitation does not resides in the platform.
It resides in the fact that some poorly written applications need
administrator rights because they write their settings and data in their
installation folder (subfolder of program �les, write protected).
It’s exactly like if linux software developpers decided to write their
applications data in /bin or /usr because by default, linux users always
run as root (it’s just an example, it is not the case), and then
complaining that linux has no security features.

” so that I can better explain to my clients why things are the way they
are. When those who frequent this thread AND at least one of the
developers of the security widget in question IN THIS ARTICLE all admit
that it’s a broken model, I think my question is reasonable.”

trying to reduce the steps to do administrative tasks the way the default
settings of UAC does, is a broken model.
But the windows limited user account model that is there since windows
NT 3.5 (1993) is NOT broken. It works the same way as linux/unix and is
as secure.
The only problem is that most programs ignored it because users were
administrator by default on their workstation. But the situation is
changing thanks to UAC, which forces developpers to write usermode

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 53/61

friendly applications, which store their data in the user pro�le, not in
program �les anymore.

“It’s like that because Microsoft is trying to improve the security of their
products.” This is a lame explanation

security has been there for a long time.
The only problem is that windows still creates administrator account by
default, AND that users still use this account by default because they
don’t care about security, and don’t know what is a user account.
This is a choice made to make the use of windows easier (no security
prompts until vista and uac), and application compatibility better.

But many business run successfully their windows nt4/2000/xp/vista
systems with limited user accounts, once they asserted the compatibility
of all their applications.

“Microsoft will need to start from scratch to overcome their security
issues because they have been on the wrong track for the past 10
years.”

the only wrong decision with windows NT has been to create an
administrator account by default, because users don’t know about
security, and they always use the default con�guration (which is the
default administrator user created by windows installation). Then, the
developpers have targetted the default con�guration, building
applications that write in “program �les”, making them incompatible with
limited user account, just because of this stupid mistake.
But the Windows NT security model is as secure as the linux model
you’ve been touting. You just have to decide to use it by not running as
administrator.

“link8583 is defending Windows the way it is, and is not saying WHY,
except that “it is easier for the user” … which also, in this case, means it
is less safe.”

it is less safe IF users run as administrator.
but it is safe is users run as limited users.

“I agree with that, while still thinking that MSIE is, in fact, a �le manager
that is able to access url-de�ned locations rather than a “web browser””

???
what does ie has to do with a �le browser??

“, and, as such, is not in the same class as a “web browser”, and as such
is less secure than a “web browser” should be.”

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 54/61

under windows xp, explorer.exe windows can be changed as IE6 windows
seemlessly, because of the activeX magic. But that does not make IE a
�le browser, nor does it makes your �les accessible on the web. This
mechanism does NOT makes IE less secure.

“But in Microsoft’s engineering case, they created a big security hole
when shared �les are system �les … because when a system �le gets
compromised, it exposes the system. When a userland �le is
compromised, that only affects the userland … not the system.”

You’re completely WRONG about that!
But this explains many of your misunderstandings

On windows/linux/osx, when you run a program, it runs with the same
right as the current user, no matter if this program is located is system
folders or in the user pro�le (except on linux with programs that have
the suid �ag set, in which case they run with the privilege of their owner,
often the root account)

So, when a program using system �les is compromised (it is
compromised at execution, with the current user privileges, not at the
�lesystem level), it does not compromises the whole system, just the
user pro�le.

“Maybe its a political thing … Microsoft doesn’t want to admit that they
have been pursuing a �awed model or something”

It’s not.
It’s a retrocompatibility decision, because retrocompatibility is the
number 1 reason why windows still have 90% market share.
Microsoft does not want to lower retrocompatibility by creating limited
user account by default, because they know that users will still give
admin rights to virus infected applications they downloaded from some
unknown websites, and get as much infected as if they ran as
administrator directly.
So, it’s not worth the pain to reduce application compatibility by
enforcing default security policy.
It would be exactly the same with linux. Users always give root rights to
applications they want to install… after all, how can they resist to a free
screensaver that an ad just suggested them to install?

“I don’t know. But I DO know that I have yet to see any technical
explanation as to WHY the Posix multi-user security model was not
used, or at least why Microsoft insists on continuing to follow their
current path.”

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 55/61

The multi user model is used, by many windows users. Just not those
who don’t feel concerned about security.
Microsoft can’t force the user to change their habits and break legacy
application compatibility, or they risk losing money.

“If the answer is not available, that’s �ne. It is a question which I have
often been asked, and I have yet to be able to answer it, so if I still can’t
answer it, so be it.”

I think I’ve answered that question. Let me know if something is still
unclear.

link8583

June 20, 2009 at 1:37 pm

“It is an extremely exposed, public face and needs to be kept as
separate from the underlying OS as possible”

You’re wrong.
The fact that the IE engine is included in windows and is used in many
programs is actually more secure, because if there is a �aw in IE, there
need to be only one update, provided by windows update, to �x the �aw
in the IE engine for every program that use it. If IE was not included in
windows, software developpers would have to use another rendering
engine, and it would be their responsability to issue updates when this
rendering engine suffers from a security �aw. And most developper don’t
care about this kind of �aw…
With the mozilla approach, each program that needs gecko engine
includes the whole gecko engine. Then, when a �aw is discovered in
gecko, every application that uses gecko must be updated, making the
customers more exposed to the �aw. Look at thunderbird, it is often
updated one week only after Firefox when there are �aws discovered in
Gecko.

“Internet Explorer provides many system �les, as you noted with regard
to the HTML rendering engine, for example, and is therefore less of a
“web browser” and more of a “system” application.”

Think of IE engine as a shared library. That does not make it more
dangerous than �refox.

“When a system-level application is compromised, it is far more
dangerous to the system than when a userland application is
compromised”

http://www.julien-manici.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 56/61

as I said earlier, that’s absolutely wrong.
IE does not run with higher privileges than �refox. It’s even the opposite
since windows vista. Firefox has more privileges than IE, and can do
more damage if it is exploited by a malware.

“It is common to “compromise” (exploit a vulnerability that leads to a
successful attack on) any computer by using a vector into system-level
�les and processes, and, since you brought it up, under Windows there
is an excellent chance of compromising the kernel, too, because other
system �les tie into it so heavily. (Another big difference in security
models.)”

wrong again.
You confused system services (on windows) or daemons (on linux) with
system �les and processes that are run within a user account context.
Exploiting a windows service give you the same privileges as the service.
In the case of IIS7 webserver, you will get low privileges and won’t be
able to do much damage.
You won’t get any admin rights by compromising IE. You won’t even get
the current users rights, since IE runs in Low IL.

“A buffer over�ow attack is a typical example. This is exactly the reason
why MSIE is a low-priority process.”

integrity, not priority

“It’s a sort of additional protection after so many attacks got through to
the system level in earlier versions.”

you’re wrong again.
Attacks under IE on windows xp used to go through the system level
because most users ran as administrator.
Firefox users running as administrator also face the same risk, even if
�refox is stored in the user pro�le : if this user has admin rights, once
�refox is exploited by a malware, it gets admin rights.

“It is trivial to over�ow a program that accesses web pages by using
something as simple as a rigged JPEG image, including MSIE and
Firefox, and if that program were privileged enough, then it could easily
be used to “compromise” the system.”

indeed, but not on windows vista and current linux kernels thanks to
ASLR and DEP.

“MSIE does not run exclusively in userland, and on Windows, neither
does Firefox, due to the reuse of code that you mentioned earlier.”

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 57/61

IE and �refox, on windows xp, run with exactly the same privileges. In
limited user account, they can’t harm the system if they get exploited.

“However it is possible that building a web browser for Microsoft
REQUIRES system-level �les, because there is no alternative provided or
allowed, so that would let a few developers off the hook.”

that’s again completely wrong.
Where did you get that idea that �refox or IE runs with some special
privileges??

“Under Linux, if Firefox were compromised by an exploit, then the worst
that could happen is that that user’s �les could be modi�ed by the
attacker and/or the attacker could add/remove stuff in that user’s
restricted space.”

that’s the same with windows, under limited user account
but remember that even under linux, with limited rights, a malware can
still send spam, show unwanted ads, steal users data, credit card
number, be part of a botnet and participate to DDoS attacks. No need
for root privileges to do that!

“To repair even the most screwed up pro�le requires removing the
compromised userspace and establishing a clean one. The rest of the
system remains untouched. Compromising the MODERN kernel is
unheard of. (Find a validated example regarding a 2.x Linux kernel and I’ll
eat my words with mustard.)”

Last year, there had been a critical 0day �aw that allowed any limited
user account to get root privileges, and many shared web servers with C
based CGI allowed or ssh servers have been hacked through this �aw by
users who had limited accounts. This �aw did allow the hackers to
compromise the kernel, since a root user could do anything.
But there are �aw in windows and linux kernel in a regular basis. This
one was just widely used because its exploitation details have been
widely known before sysadmins had the time to patch their system.

“Compromising the Windows kernel is not only heard of, it’s how the
most recent Windows rootkits are evading detection. Hell, they can even
get through to the BIOS on a Windows system!”

rootkits have been existing on linux systems since the 90’s. There is no
need to exploit a security �aw to install a rootkit. A rootkit is just a
kernel module that hiddens its presence by altering some api outputs.
There’s nothing than a system can do to prevent rootkit from existing.

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 58/61

Once the user give root rights to a program, it can install as a rootkit.
No �aw here, it’s just a feature, in windows/linux/osx.

“Also don’t get me started on how Windows is compromised so often by
viruses and rootkits and other malware because it is so popular. That is
one reason, de�nitely it’s a big target, but if that were the primary
reason, then Linux would be experiencing similar rates of compromise,
as it is the number one platform for web servers in the world and you’d
better believe that hackers are very anxious to penetrate them.”

Linux server are often compromised, at least the websites that runs
onto them.
More than IIS webservers, since there have been really not much �aws
in IIS and ASP.net these last years, compared to Apache/PHP and the
popular php based solutions that are often deployed on top of them.

“Not to gain access to the databases and whatnot stored on them,
which happens all the time due to poor application design, but to gain
access to the SYSTEMS from where they could both hide and control a
far greater range of activity. The difference comes down to the security
model.”

I advise you to update your knowledge about IIS. Security has changed
since IIS4, and it’s now very secure. Not to mention that ASP.net is also
a very secure platform, that has rarely suffered from security �aws.
Websites built using asp.net are less likely to be hacked than php based
websites, because asp.net eliminates many of the common attack
vectors that bad developpers are often responsible of (sql injection,
script/html injection due to lack of input validation, server side includes).

Евген

June 22, 2009 at 2:20 am

вы все тупые америкосы у ха ха

Leo
Davidson

June 23, 2009 at 1:12 am

More food for thought from Chris Corio:

http://www.withinwindows.com/2009/06/10/uac-uac-go-away-come-
again-some-other-day/comment-page-1/#comment-4025

http://www.pretentiousname.com/
http://www.withinwindows.com/2009/06/10/uac-uac-go-away-come-again-some-other-day/comment-page-1/#comment-4025

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 59/61

If you keep reading after his reply, skip my “7:38am” reply as I had a
HTML mishap. I re-posted it with corrections directly afterwards
(“7:52am”):

http://www.withinwindows.com/2009/06/10/uac-uac-go-away-come-
again-some-other-day/comment-page-1/#comment-4036

I also stumbled on this off-message post which is another example of
MS doing a bad job of explaining what they’re now saying UAC is
supposed to be for (and not for), even internally:

http://shippingseven.blogspot.com/2008/04/okso.html

(Assuming the blog is really by someone working on Windows 7.) FWIW,
I agree with what the blog says and am pointing it out because it
contradicts “the message” and not because I think it’s wrong. I agree
with the blog that UAC is, or was, an imperfect but useful defence
against some malware doing worse than it could, e.g.
http://en.wikipedia.org/wiki/Con�cker#Operation

Pingback: DotNetBurner - Security

Rob

June 24, 2009 at 7:48 am

“slither of doubt”? You mean “sliver of doubt”.

STKD

June 24, 2009 at 11:50 pm

Oh here we are in front of this highly secure Linux/OSX system I just
found running. Let’s try to run something…
Oh bugger, it needs a password I don’t have. I guess that’s me well and
truly defe… WAIT… what if…
/types sudo passwrd in terminal
Shit i defeated their uber complex security! LINUX IS NOW
VULNERABLE! OSX IS NOW VULNERABLE!
HOLY SHART DOES ANYONE KNOW ABOUT THIS?!
Now to publish a tabloid-quality article for osnews about how every
Linux/OSX system is unsecure to an admin.

http://www.withinwindows.com/2009/06/10/uac-uac-go-away-come-again-some-other-day/comment-page-1/#comment-4036
https://shippingseven.blogspot.com/2008/04/okso.html
https://en.wikipedia.org/wiki/Conficker#Operation
http://dotnetburner.com/detail/724/windows-7-uac-codeinjection-vulnerability-video-demonstration-source-code-released-istartedsomething

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 60/61

Comments are closed.

Long Zheng

User experience entrepreneur
Melbourne, Australia

I'm a person and stuff. Mostly person, sometimes stuff. Proud introvert.

I make/made stuff people love to use:
MyPal: unof�cial Melbourne myki mobile app, Omny Studio: enterprise podcast hosting,
PTVGlass: Melbourne bus, tram & train timetable on Google Glass, Map2Glass: type and send
addresses to Google Glass, SoundGecko: text-to-speech web reader, ChevronWP7: Windows

Leo
Davidson

June 25, 2009 at 5:16 am

Congratulations, STKD, on completely failing to understand how sudo
works! To collect your free prize please run “sudo clue” on your
imaginary Linux system. Have a nice day!

Leo
Davidson

June 25, 2009 at 5:19 am

(Though, yes, the terminal can grab passwords, just like a spoofed UAC
prompt can. Sudo works very differently to UAC, though, and to claim
they are equivalent is ridiculous.)

jono

October 8, 2012 at 6:19 pm

soo were can i get this tool

Derryp7r

March 11, 2013 at 6:37 am

What we can do if sysprep.exe doesn’t exists in the folder¿?

https://longzheng.github.io/mypal-ionic/
https://omnystudio.com/
https://github.com/longzheng/PTVGlass
http://www.pretentiousname.com/
http://www.pretentiousname.com/

12/31/2020 Windows 7 UAC code-injection vulnerability: video demonstration, source code released | istartedsomething

https://www.istartedsomething.com/20090613/windows-7-uac-code-injection-vulnerability-video-demonstration-source-code-released/ 61/61

Proudly powered by WordPress

Phone community unlocking, MetroTwit: Twitter app for Windows, Speedo Plus: Windows
Phone GPS app, Bing Image Archive: browse daily backgrounds and Windows UI Taskforce:
crowdsourced bug tracker.

 YouTube

 Instagram

 Flickr

 LinkedIn

 Email

Follow 11.5K followers

https://wordpress.org/
http://www.metrotwit.com/
https://www.youtube.com/user/longzheng
https://www.instagram.com/longzhengau/
https://www.flickr.com/photos/longzheng
https://www.linkedin.com/profile/view?id=6009960
mailto:long.zheng@gmail.com
https://twitter.com/intent/follow?original_referer=https%3A%2F%2Fwww.istartedsomething.com%2F&ref_src=twsrc%5Etfw®ion=follow_link&screen_name=longzheng&tw_p=followbutton
https://twitter.com/intent/user?original_referer=https%3A%2F%2Fwww.istartedsomething.com%2F&ref_src=twsrc%5Etfw®ion=count_link&screen_name=longzheng&tw_p=followbutton

